The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

2601-2620hit(2923hit)

  • Scattering and Diffraction of a Plane Wave by a Randomly Rough Half-Plane: Evaluation of the Second-Order Perturbation

    Yasuhiko TAMURA  Junichi NAKAYAMA  Kazuteru KOMORI  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1381-1387

    This paper deals with the scattering and diffraction of a plane wave by a randomly rough half-plane by three tools: the small perturbation method, the Wiener-Hopf technique and a group theoretic consideration based on the shift-invariance of a homogeneous random surface. For a slightly rough case, the scattered wavefield is obtained up to the second-order perturbation with respect to the small roughness parameter and represented by a sum of the Fresnel integrals with complex arguments, integrals along the steepest descent path and branch-cut integrals, which are evaluated numerically. For a Gaussian roughness spectrum, intensities of the coherent and incoherent waves are calculated in the region near the edge and illustrated in figures, in terms of which several characteristics of scattering and diffraction are discussed.

  • The Redundancy of Universal Coding with a Fidelity Criterion

    Daiji ISHII  Hirosuke YAMAMOTO  

     
    PAPER-Source Coding

      Vol:
    E80-A No:11
      Page(s):
    2225-2231

    The redundancy of universal lossy data compression for discrete memoryless sources is considered in terms of type and d-ball covering. It is shown that there exists a universal d-semifaithful code whose rate redundancy is upper bounded by (A-1/2)n-1ln n+o(n-1ln n), where A is the cardinality of source alphabet and n is the block length of the code. This new bound is tighter than known ones, and moreover, it turns out to be the attainable minimum of the universal coding proposed by Davisson.

  • Image Synthesis of Flickering Scenes Including Simulated Flames

    Jun-ya TAKAHASHI  Hiromichi TAKAHASHI  Norishige CHIBA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:11
      Page(s):
    1102-1108

    Producing realistic images and animations of flames is one of the most interesting subjects in the field of computer graphics. In a recent paper, we described a two-dimensional particle-based visual method of simulating flames. In the present paper, we first extend the simulation method, without losing any of its desirable features, in such a way that it functions in three-dimensional space. We then present an efficient method of producing an image of the scene, including flames acting as volume light sources, which normally requires a large amount of computing time in the usual simulation approaches. Finally, we demonstrate the capabilities of our visual simulation method by showing sample images generated by it, which are excerpted from an animation.

  • Measurements of Electromagnetic Noise Radiating from a Printed Line Model Driven by a Switching Device

    Motoshi TANAKA  Chiharu TAKAHASHI  Hiroshi INOUE  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1614-1619

    Switching device used on digital and inverter circuits such as a stabilizer of fluorescent lamp is one of main sources of electromagnetic noise. To make such noise characteristics clear, using a simple printed line model with a TTL IC as a switching device, electric far field noise radiating from that model is measured in an anechoic chamber. It is shown typical results and that noise characteristics can be evaluated by comparing the spectrum and spectrum change of the harmonics of 3 MHz switching pulse using the same switching device. And the characteristics of the electric field noise with PCB thickness and strip line width changed are compared with the magnetic near-field noise measured by a small shielded loop antenna. The results indicate that the electric field noise strength, on the case where the width is 7 mm and the thickness is 0.51 mm, is larger than that on other cases in the range from 50 to 150 MHz. And it is confirmed that the magnetic near-field noise increases as the loop antenna approaches the IC and varies depending on the PCB thickness and the line width. However, the spectral profile of the electric field noise is different from the magnetic near-field noise.

  • Integral Kernel Expansion Method on Scattering of Magnetostatic Forward Volume Waves by Metal Strip Array

    Ning GUAN  Ken'ichiro YASHIRO  Sumio OHKAWA  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1388-1394

    The integral kernel expansion method is applied to an analysis of scattering of magnetostatic forward volume waves (MSFVWs) by an array with any number of metal strips. In this method, first the integral kernel of the Fourier integral is expanded in terms of orthogonal polynomials to obtain moment equations. Then a system of algebraic equations is derived by applying the Galerkin's method. In the process, interaction between strips is naturally taken into account and real current distributions on the strips are determined such that boundary conditions are satisfied. Calculus confirmation through the energy conservation principle shows that numerical results are quite satisfactory. A comparison shows that theoretical results are in good agreement with experimental ones except the vicinity of lower and upper limits of the MSFVW band. It is shown that an infinite number of propagation modes is excited even if a wave of single mode is incident. Dependence of the scattering on dimension of arrays and on frequency and mode of an incident wave is obtained.

  • An Incremental Theory of Diffraction for Objects with Local Cylindrical Shape

    Roberto TIBERIO  Stefano MACI  Alberto TOCCAFONDI  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1367-1373

    In this paper, a quite general systematic procedure is presented for defining incremental field contributions, that may provide effective tools for describing a wide class of scattering and diffraction phenomena at any aspect, whthin a unitary, self-consistent framework. This is based on a generalization of the localization process for cylindrical canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution may also be represented as a spatial integral convolution along the axis of the cylinder. Its integrand is then directly used to define the relevant incremental field contribution. This procedure, that will be referred to as a ITD (Incremental Theory of Diffraction) Fourier transform convolution localization process, is explicitly applied to both wedge and circular cylinder canonical configurations, to define incremental diffiraction and scattering contributions, respectively. These formulations are asymptotically approximated to find closed form high-frequency expression for the incremental field contributions. This generalization of the ITD lacalization process may provide a quite general, systematic procedure to find incremental field contributions that explicitly satisfy reciprocity and naturally lead to the UTD ray field representation, when it is applicable.

  • Diffraction and Scattering of a Plane Wave from Randomly Deformed Periodic Surface

    Lan GAO  Junichi NAKAYAMA  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1374-1380

    This paper deals with a probabilistic formulation of the diffraction and scattering of a plane wave from a periodic surface randomly deformed by a binary sequence. The scattered wave is shown to have a stochastic Floquet's form, that is a product of a periodic stationary random function and an exponential phase factor. Such a periodic stationary random function is then represented in terms of a harmonic series representation similar to Fourier series, where `Fourier coefficients' are mutually correlated stationary processes rather than constants. The mutually correlated stationary processes are written by binary orthogonal functionals with unknown binary kernels. When the surface deformations are small compared with wavelength, an approximate solution is obtained for low-order binary kernels, from which the scattering cross section, coherently diffracted power and the optical theorem are numerically calculated and are illustrated in figures.

  • Time-Frequency Analysis of Scattering Data Using the Wavelet Transform

    Masahiko NISHIMOTO  Hiroyoshi IKUNO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1440-1447

    Scattering data from radar targets are analyzed in the time-frequency domain by using wavelet transform, and the scattering mechanisms are investigated. The wavelet transform used here is a powerful tool for the analysis of scattering data, because it can provide better insights into scattering mechanisms that are not immediately apparent in either the time or frequency domain. First, two types of wavelet transforms that are applied to the time domain data and to the frequency domain data are defined, and the multi-resolution characteristics of them are discussed. Next, the scattering data from a conducting cylinder, two parallel conducting cylinders, a parallel-plate waveguide cavity, and a rectangular cavity in the underground are analyzed by using these wavelet transforms to reveal the scattering mechanisms. In the resulting time-frequency displays, the scattering mechanisms including specular reflection, creeping wave, resonance, and dispersion are clearly observed and identified.

  • Investigation on Radiated Emission Characteristics of Multilayer Printed Circuit Boards

    Takashi HARADA  Hideki SASAKI  Yoshio KAMI  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1645-1651

    This paper analyzes mechanisms of radiated emissions from multilayer printed circuit boards (PCBs) and presents a model to describe the characteristics of such radiation. The radiation mechanism from a four-layer PCB, including the internal power and ground planes, is investigated using a time-domain magnetic field measurement near the PCB. Measurement of the waveform indicates that the main source of radiation is in the power distribution planes. To investigate the characteristics of the radiation from the power distribution, the S21s of the board are measured; the board impedance and the transmission characteristics of the power distribution planes are found to be directly related to the S21 between the two points in the board. The results indicate that the power distribution acts as a transmission line at frequencies higher than 100 MHz. A model that can explain well the radiation properties of these planes treats them as a parallel-plate transmission line interconnected by decoupling circuit comprising a decoupling capacitor and interconnect inductance. From the transmission line theory it is deduced that the line resonance gives rise to strong radiated emissions. The interconnect inductance is an important factor in determining the radiation characteristics.

  • An Almost Sure Recurrence Theorem with Distortion for Stationary Ergodic Sources

    Fumio KANAYA  Jun MURAMATSU  

     
    LETTER-Source Coding/Channel Capacity

      Vol:
    E80-A No:11
      Page(s):
    2264-2267

    Let {Xk}k=- be a stationary and ergodic information source, where each Xk takes values in a standard alphabet A with a distance function d: A A [0, ) defined on it. For each sample sequence X = (, x-1, x0, x1, ) and D > 0 let the approximate D-match recurrence time be defined by Rn (x, D) = min {m n: dn (Xn1, Xm+nm+1) D}, where Xji denotes the string xixi+1 xj and dn: An An [0, ) is a metric of An induced by d for each n. Let R (D) be the rate distortion function of the source {Xk}k=- relative to the fidelity criterion {dn}. Then it is shown that lim supn-1/n log Rn (X, D) R (D/2) a. s.

  • An lterative Improvement Method for State Minimization of Incompletely Specified Finite State Machines

    Hiroyuki HIGUCHI  Yusuke MATSUNAGA  

     
    PAPER-Logic Design

      Vol:
    E80-D No:10
      Page(s):
    993-1000

    This paper proposes a heuristic algorithm for state minimization of incompletely specified finite state machines (FSMs). The strategy is similar to that in ESPRESSO, a wellknown heuristic algorithm for two-level logic minimization. It consists of generating an initial solution, the set of maximal compatibles, and attempting to apply a series of transformations to the solution. The main transformation is to reduce each compatible in the solution and delete unnecessary compatibles by iterative improvements. Other transformations, such as expansion and merging of compatibles, are also introduced for further reduction. When the number of compatibles is likely to be too large to handle explicitly, they are represented by a Binary Decision Diagram. Experimental results show that the proposed method finds better solutions in shorter CPU times for most of the examples than conventional methods.

  • A Co-Evaluation of the Architectures and the CAD System for Speed-Oriented FPGAs

    Tsunemasa HAYASHI  Atsushi TAKAHARA  Kennosuke FUKAMI  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1842-1852

    This paper presents an FPGA architecture for high-speed systems, such as next-generation B-ISDN telecommunications systems. Such a system requires an LSI in which an over-10K-gate circuit can be implemented and that has a clock cycle rate of 80MHz. So far, the FPGA architecture has only been discussed in terms of its circuit structure. In contrast we consider the circuit structure of the FPGA along with the performance of its dedicated CAD system. We evaluate several FPGA logic-element structures with a technology mapping method. From these experiments, a multiplexor-based logic-element is found to be suitable for implementing such a high-speed circuit using the BDD-based technology mapping method. In addition, we examine how to best utilize the characteristics of the selected logic-cell structure in designing the wiring structure. It is found that the multiplexor-based cell can be connected efficiently in a clustered wiring structure.

  • Analysis by I-V Curves for Intrinsic Josephson Junctions of Tl2Ba2CaCu2Ox Thin Films on MgO Substrates

    Shuichi YOSHIKAWA  Masaaki NEMOTO  Kazuhiro SHIMAOKA  Isao YOSHIDA  Yorinobu YOSHISATO  

     
    INVITED PAPER

      Vol:
    E80-C No:10
      Page(s):
    1291-1296

    We successfully observed curent-voltage (I-V) curves which showed the behavior of intrinsic Josephson junctions using Tl2Ba2CaCu2Ox (Tl-2212) thin films on MgO substrates by structuring mesas and measuring the electrical transport properties along the c-axis. For a 55 µm2 mesa, a hysteretic I-V curve was observed up to 80 K, which showed that series-connected SIS-type junctions are formed. Compared with the critical current density (Jc) of more than 106 A/cm2 parallel to the ab-plane, an anisotropic Jc of 1.4102 A/cm2 along the c-axis was observed at 4.9 K. By focusing on the I-V curve at lower bias current, the constant voltage jumps measured at the first seven branches were estimated to be 26 mV. The normal resistance (Rnk) of a unit SIS junction was estimated to be 580 Ω by substituting the measured voltage jump in the Ambegaokar and Baratoff relation. Using the calculation for McCumber parameter (βc), the capacitance (Ck) of the unit SIS junction was estimated to be 3.610-10 F/cm2 at 77 K. The IckRnk product was estimated to be 6.4 mV and the cut-off frequency (fc1/2πRnkCk) was calculated to be 3.1 THz at 77 K. The Jc and the hysteresis decreased with an increase in the mesa area, and finally, for a 300300µm2 mesa, a resistively shunted junction (RSI) like curve without hysteresis was observed up to 98 K. A Jc of 5.6101 A/cm2 along the c-axis was observed at 6.4 K. This may be explained by the higher content of conductive grain boundaries for a larger mesa area.

  • Decomposition of Radar Target Based on the Scattering Matrix Obtained by FM-CW Radar

    Yoshio YAMAGUCHI  Masafumi NAKAMURA  Hiroyoshi YAMADA  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E80-B No:10
      Page(s):
    1564-1569

    One of the polarimetric radar applications is classification or identification of targets making use of the scattering matrix. This paper presents a decomposition scheme of a scattering matrix into three elementary scattering matrices in the circular polarization basis. The elementary components are a sphere, a diplane (dihedral corner reflector), and a helix. Since a synthetic aperture FM-CW radar provides scattering matrix through a polarimetric measurement, this decomposition scheme was applied to the actual raw data, although the matrix is resulted from a swept frequency measurement. Radar imaging experiments at the Ku band (14.5-15.5GHz) were carried out to obtain a total of 6464 scattering matrices in an imaging plane, using flat plates, corner reflectors and wires as elementary radar targets for classification. It is shown that the decomposition scheme has been successfully carried out to distinguish these targets and that the determination of rotation angle of line target is possible if the scattering matrix is classified as a wire.

  • The Formulae of the Characteristic Polarization States in the Co-Pol Channel and the Optimal Polarization State for Contrast Enhancement

    Jian YANG  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  Shiming LIN  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E80-B No:10
      Page(s):
    1570-1575

    For the completely polarized wave case, this paper presents the explicit formulae of the characteristic polarization states in the co-polarized radar channel, from which one can obtain the CO-POL Max, the CO-POL Saddle and the CO-POL Nulls in the Stokes vector form. Then the problem on the polarimetric contrast optimization is discussed, and the explicit formula of the optimal polarization state for contrast enhancement is presented in the Stokes vector form for the first time. To verify these formulae, we give some numerical examples. The results are completely identical with other authors', which shows the validity of the presented method.

  • Multi-clustering Network for Data Classification System

    Rafiqul ISLAM  Yoshikazu MIYANAGA  Koji TOCHINAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:9
      Page(s):
    1647-1654

    This paper presents a new multi-clustering network for the purpose of intelligent data classification. In this network, the first layer is a self-organized clustering layer and the second layer is a restricted clustering layer with a neighborhood mechanism. A new clustering algorithm is developed in this system for the efficiently use of parallel processors. This parallel algorithm enables the nodes of this network to be independently processed in order to minimize data communication load among processors. Using the parallel processors, the quite low calculation cost can be realized among the conventional networks. For example, a 4-processor parallel computing system has shown its ability to reduce the time taken for data classification to 26.75% of a single processor system without declining its performance.

  • Novel Technologies for High-Performance Hard Disk Drives

    Kohki NODA  Masahiko NAOE  

     
    INVITED PAPER

      Vol:
    E80-C No:9
      Page(s):
    1135-1141

    Since the introduction of magnetoresistive (MR) heads, the areal density of hard disk drives (HDDs) has been increasing at a rate of 60% a year, and has now reached 1.4 Gb/sq. in. The data rate has also been increasing at a rate of 40% or more, and this has recently become a key factor in the ability of multimedia applications to transfer stored data rapidly from the HDD to the PC or workstation. Currently, data rates of around 150 Mb/sec are being implemented in products. In this study, key technologies for increasing both the areal density and the data rate of HDDs are proposed. If they are implemented, an areal density of around 10 Gb/sq. in. and a data rate of 200 Mb/sec or more can be achieved.

  • Neural Network Based Photometric Stereo with a Nearby Rotational Moving Light Source

    Yuji IWAHORI  Robert J. WOODHAM  Masahiro OZAKI  Hidekazu TANAKA  Naohiro ISHII  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:9
      Page(s):
    948-957

    An implementation of photometric stereo is described in which all directions of illumination are close to and rotationally symmetric about the viewing direction. THis has practical value but gives rise to a problem that is numerically ill-conditioned. Ill-conditioning is overcome in two ways. First, many more than the theoretical minimum number of images are acquired. Second, principal components analysis (PCA) is used as a linear preprocessing technique to determine a reduced dimensionality subspace to use as input. The approach is empirical. The ability of a radial basis function (RBF) neural network to do non-parametric functional approximation is exploited. One network maps image irradiance to surface normal. A second network maps surface normal to image irradiance. The two networks are trained using samples from a calibration sphere. Comparison between the actual input and the inversely predicted input is used as a confidence estimate. Results on real data are demonstrated.

  • A Massive Digital Neural Network for Total Coloring Problems

    Nobuo FUNABIKI  Junji KITAMICHI  Seishi NISHIKAWA  

     
    LETTER

      Vol:
    E80-A No:9
      Page(s):
    1625-1629

    A neural network of massively interconnected digital neurons is presented for the total coloring problem in this paper. Given a graph G (V, E), the goal of this NP-complete problem is to find a color assignment on the vertices in V and the edges in E with the minimum number of colors such that no adjacent or incident pair of elements in V and E receives the same color. A graph coloring is a basic combinatorial optimization problem for a variety of practical applications. The neural network consists of (N+M) L neurons for the N-vertex-M-edge-L-color problem. Using digital neurons of binary outputs and range-limited non-negative integer inputs with a set of integer parameters, our digital neural network is greatly suitable for the implementation on digital circuits. The performance is evaluated through simulations in random graphs with the lower bounds on the number of colors. With a help of heuristic methods, the digital neural network of up to 530, 656 neurons always finds a solution in the NP-complete problem within a constant number of iteration steps on the synchronous parallel computation.

  • The Object-Space Parallel Processing of the Multipass Rendering Method on the (Mπ)2 with a Distributed-Frame Buffer System

    Hitoshi YAMAUCHI  Takayuki MAEDA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Computer Architecture

      Vol:
    E80-D No:9
      Page(s):
    909-918

    The multipass rendering method based on the global illumination model can generate the most photo-realistic images. However, since the multipass rendering method is very time consuming, it is impractical in the industrial world. This paper discusses a massively parallel processing approach to fast image synthesis by the multipass rendering method. Especially, we focus on the performance evaluation of the view-dependent object-space parallel processing on the (Mπ)2 which has been proposed in our previous paper. We also propose two kinds of distributed frame buffer system named cached frame buffer and multistage-interconnected frame buffer. These frame buffer systems can solve the access conflict problem on the frame buffer. The simulation results show that the (Mπ)2 has a scalable performance. For example, the (Mπ)2 with more than 4000 processing elements can achieve an efficiency of over 50%. We also show that both of the proposed distributed frame buffer systems can relieve the overhead due to frame buffer access in the (Mπ)2 in the case that a large number of high-performance processing elements are adopted in the system.

2601-2620hit(2923hit)