The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Rake(93hit)

21-40hit(93hit)

  • Rake Reception of UWB-IR Indoor Radio with Reflector

    Isamu MATSUNAMI  Akihiro KAJIWARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    952-959

    Ultra-wideband impulse-radio systems have the ability to resolve multiple paths of the transmit radio and to mitigate the fading. Rake reception is capable of combining these paths, thereby improving the signal-to-noise ratio. In LOS channel, however, the improvement may be comparatively small for the cost of increasing receiver system complexity. This is because the LOS path should be dominant for the total energy in all paths. In this paper the distribution of the energy captured by Rake receiver is first presented for 160 measured LOS channel cases and then discussed. Rake reception with reflector is next suggested in order to effectively increase the signal energy without increasing the complexity, that is, increased number of Rake fingers. The use of reflector is also suggested for non-LOS channel and experimentally discussed where the Rake gain is compared with conventional Rake without reflector. The measurement results show the usefulness.

  • Cyclic Shifted-and-Extended Codes Based on a Quasi-Orthogonal Sequence for a CDM Transmission Scheme

    Kazuyuki SHIMEZAWA  Hiroshi HARADA  Hiroshi SHIRAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:11
      Page(s):
    2998-3007

    We have developed a code-division-multiplexing (CDM) transmission scheme for future road-vehicle communication systems, which uses cyclic shifted-and-extended (CSE) codes generated from a basic code with superior auto-correlation characteristics. This paper proposes to use a Quasi-Orthogonal (QO) sequence as the basic code. Its auto-correlation values are zero except at zero and middle shifts. When the CDM transmission is performed by the CSE codes based on the QO sequence, a desired correlation value is, at a receiver, interfered by the auto-correlation value at middle shift. Therefore, an elimination technique for the interfered correlation value is proposed and realizes zero cross-correlation characteristics within the cyclical shift interval. The new CDM transmission scheme based on the proposed scheme is evaluated by computer simulations in terms of the bit-error-rate performance.

  • Decision Feedback Chip-Level Maximum Likelihood Detection for DS-CDMA in a Frequency-Selective Fading Channel

    Akihiro SAITO  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2564-2571

    In direct sequence code division multiple access (DS-CDMA), variable rate transmission can be realized by simply changing the spreading factor SF for the given chip rate. In a frequency-selective fading channel, the transmission performance can be improved by using rake combining. However, when a very low SF is used for achieving a high transmission rate, error floor is produced due to insufficient suppression of inter-chip interference (ICI). In this paper, decision feedback chip-level maximum likelihood detection (DF-CMLD) is proposed that can suppress the ICI. An upper-bound for the conditional bit error rate (BER) is theoretically derived for the given spreading sequence and path gains. The theoretical average BER performance is numerically evaluated by Monte-Carlo numerical computation using the derived conditional BER. The numerical computation results are confirmed by computer simulation of DS-CDMA signal transmission with DF-CMLD.

  • Performance Evaluation of M-BOK Based DS-UWB System with Space-Time Block Code

    Chul-Seung LEE  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1935-1938

    In this letter, we evaluate the M-BOK based DS-UWB system that uses a space-time block code (STBC) with Rake receivers in the WPAN environment. The conventional DS-UWB system doesn't ensure receiver reliability for the WPAN envrionment due to multipath fading, while the proposed M-BOK based DS-UWB system employing a STBC can overcome multipath fading causing attenuation of receiver reliability in the WPAN environment. In addition, a simple diversity combining receiver, called PRake receiver, shows the performance similar to that of a ARake receiver using the ideal diversity combining and reduces the receiver complexity.

  • Impact of Timing Jitter on DS-UWB and Hybrid DS-Multiband-UWB Systems with Rake Reception over Multipath Environment

    Chin Sean SUM  Shigenobu SASAKI  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1657-1667

    In this paper, the impact of timing jitter in direct sequence ultra wideband (DS-UWB) system is investigated over multipath fading channel. Also, a novel hybrid direct sequence multiband UWB (DS-MB-UWB) system is proposed to mitigate the impact of timing jitter. We analyze and compare the system performance for conventional DS-UWB and hybrid DS-MB-UWB with Rake receiver in the presence of timing jitter over additive white Gaussian noise (AWGN) and multipath channel. Theoretical framework is developed to calculate the amount of average energy captured in the multipath profiles and symbol error rate (SER) considering the presence of timing jitter. It is found that DS-MB-UWB system, which employs multiple sub-bands is more jitter-robust than conventional DS-UWB systems. Besides, timing jitter is found to have different impacts on DS-UWB and DS-MB-UWB systems corresponding to different parameters such as number of sub-bands employed, pulse shape, center frequency, bandwidth, number of combined paths in Rake receiver and channel power delay profile (PDP). These different impacts are analyzed and discussed in the paper.

  • Performance of Feedback-Type Adaptive Array Antenna in FDD System with Rake Receiver

    Mona SHOKAIR  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    539-544

    The performance of a feedback-type adaptive array antenna (AAA) system placed only at a base station (BS) in an FDD/DS-CDMA system remains insufficiently clear. We evaluate the performance of this system by considering the effect of a rake receiver, spacing distance between antennas, the maximum Doppler frequency (fd), and control delay time (Td) on BER performance. In this system, the mobile station (MS) determines optimum weights of antenna elements and sends them back to BS as feedback information. We assume that the optimum weights are not quantized. Thereby, we estimate the performance degradation of 3GPP transmit diversity system, where the feedback information is quantized using a few bits. Computer simulation results show that the rake receiver achieves better BER performance because of the time diversity effect with rake receiver. The AAA with a wide antenna spacing gives high diversity gain for the received signals. For a high value of fd Td, BER performance becomes worse because weighting factors cannot follow the changing speed of channel characteristics. The degradation in performance of a 3GPP system is clarified.

  • Error Performance of DS-CDMA over Multipath Channel Using Selective Rake Receiver

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Jie ZHOU  Hisakazu KIKUCHI  

     
    LETTER

      Vol:
    E88-A No:11
      Page(s):
    3118-3122

    Error performance of DS-CDMA is discussed over independent Rayleigh faded multipath channel employing selective Rake (SRake) receiver. Simple-to-evaluate and accurate error probabilities are given following Holtzman's simplified improved Gaussian approximation (SIGA). Comparing with SIGA, the validity of standard Gaussian approximation (SGA) is then verified. It is shown that SGA is accurate for SRake until some number of combined paths beyond which it becomes optimistic. It is also shown that as compared to single user performance, the SRake performance is relatively less degraded by multiple access interference (MAI) while the number of combined paths is small.

  • Rake Performance for UWB-IR System with SISO and MISO

    Takahiro EZAKI  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4112-4116

    In this letter, we compare a Multiple-Input Single-Output (MISO)-Ultra WideBand (UWB)- Impulse Radio (IR) system and a Single-Input Single-Output (SISO)-UWB-IR system at high transmission rates. We evaluate the Bit Error Rate (BER) of the two systems with some RAKE receivers under heavy multipath environments. From the results of our computer simulation, we show that the SISO-UWB-IR system with Minimum Mean Square Error (MMSE)-RAKE receiver is a good candidate to achieve high transmission rates.

  • Computational Complexity and Performance of RAKE Receivers with Channel Estimation for DS-UWB

    Hiroyuki SATO  Tomoaki OHTSUKI  

     
    PAPER-RAKE Receiver

      Vol:
    E88-A No:9
      Page(s):
    2318-2326

    In this paper, we evaluate the computational complexity and the performance of the RAKE receivers for the Direct Sequence--Ultra Wideband (DS-UWB) with considering the accuracy of channel estimation in a multipath channel. As RAKE receivers for DS-UWB, we consider the maximal-ratio combining (MRC)-RAKE, the minimum mean square error (MMSE)-RAKE, and the MRC-RAKE-Equalizer that is the MRC-RAKE followed by a liner equalizer. Generally, if the channel estimation is perfect, as the number of fingers or taps increases, the performance of each receiver is improved, however the computational complexity of each receiver increases. In practice, the channel estimation is not perfect. The channel estimation error makes their performances degraded. Therefore, the performances of the RAKE receivers depend on the accuracy of channel estimation. Consequently, we evaluate the computational complexities and the Bit Error Rates (BERs) of MRC-RAKE, MMSE-RAKE, and MRC-RAKE-Equalizer with considering the accuracy of channel estimation for DS-UWB. We show that the accuracy of channel estimation affects the BER of each receiver significantly. We also show that when the accuracy of channel estimation is high, MRC-RAKE-Equalizer can achieve the better BER than MMSE-RAKE with less computational complexity, while MMSE-RAKE can achieve the better BER than MRC-RAKE-Equalizer when the accuracy of channel estimation is low.

  • Adaptive RAKE Receivers with Subspace-Based Hadamard-Hermite Template Design for UWB Communications

    Craig J. MITCHELL  Giuseppe ABREU  Ryuji KOHNO  

     
    PAPER-RAKE Receiver

      Vol:
    E88-A No:9
      Page(s):
    2327-2338

    In this paper we present a novel method for improving RAKE receiver reception in UWB systems. Due to the fact that practical pulses that can be produced for UWB-IR (Ultra Wideband-Impulse Radio) may occupy a longer time than the typical multipath resolution of the actual UWB channel, multiple channel components may arrive within this typical pulse width. Performance degradation may occur due to the resulting intrapulse (overlapping received pulses) interference. We here propose an adaptive, pilot aided RAKE receiver for UWB communications in the multipath environment. The proposed system estimates the actual received signal with intrapulse interference in each RAKE finger using projections onto a Hadamard-Hermite subspace. By exploiting the orthogonality of this subspace it is possible to decompose the received signal so as to better match the template waveform and reduce the effects of intrapulse interference. By using the projections onto this subspace, the dimension of the received signal is effectively increased allowing for adaptive correlator template outputs. RAKE receivers based on this proposal are designed which show significant performance improvement and require less fingers to achieve required performance than their conventional counterparts.

  • On Rake Reception of Ultra Wideband Signals over Multipath Channels from Energy Capture Perspective

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Jie ZHOU  Hisakazu KIKUCHI  

     
    PAPER-RAKE Receiver

      Vol:
    E88-A No:9
      Page(s):
    2339-2349

    Performance of Rake reception of Ultra Wideband (UWB) signals is evaluated from energy capture perspective. In addition to ordinary all Rake (ARake) and selective Rake (SRake) receivers which are considered in conventional spread spectrum communications, we introduce optimum ARake and SRake receivers which include the estimation of delay of the combining multipaths. Impact of pulse-width is discussed on their performances considering the relationship between pulse-width and fading. Time hopping M-ary pulse position modulation (TH-MPPM) and binary phase shift keying (TH-BPSK) are considered as modulation schemes. Extensive simulation results are presented showing the performances of the Rakes introduced using IEEE 802.15.3a UWB channel models (CM1 to CM3). Performance of MPPM is shown for various values of M and modulation parameters. The impact of pulse-width is illustrated mainly using BPSK. It is shown that the total energy capture (i.e. by ARake) strongly depends on the pulse-width, and the shorter the pulse-width the more is the amount. The energy capture also varies a lot for employing either optimum or ordinary Raking method. Energy capture by SRake additionally strongly depends on the number of combined paths until the number is 20 for optimum SRake and 10 for ordinary SRake; however, afterwards saturating effects are seen. Several aspects regarding the performance versus complexity issue of Rake receivers are also discussed.

  • Analysis of Performance Degradation due to Channel Estimation Error in Pre-Rake TDD/CDMA

    Norharyati BINTI HARUM  Yuh TAMURA  Sigit P.W. JAROT  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2508-2515

    In recent years, Pre-Rake combining technique has become a hot topic of research as it decreases the complexity of the portable mobile unit, while achieving the same multipath diversity effect of the Rake receiver. The technique is based on precoding of the transmitted signal relying on knowledge of the channel estimation response before transmission. This a priori channel state information is available in Time Division Duplexing (TDD) systems, since the same channel is used both in uplink and downlink. In practice, the error in channel estimation in Pre-Rake system occurs due to time variability in mobile radio channel. Most previous works on Pre-Rake in TDD CDMA have not taken into consideration the effect of imperfect channel estimation. In this paper, we present Pre-Rake performance under imperfect channel estimation due to time variability in TDD system, depending on Doppler Frequency and compare it with the ideal Pre-Rake system. Numerical analysis and computer simulations were carried out to obtain the system error probability.

  • A Blind Interference-Blocking RAKE Receiver for CDMA Communications Systems

    Tsui-Tsai LIN  Chih-Peng LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2073-2080

    A space-time RAKE (ST-RAKE) receiver with a blind interference-blocking (IB) pre-processor, termed as the IB-RAKE receiver, is proposed for spread spectrum communications systems. The design of the proposed architecture consists of three components. A blind IB transformer is first constructed based on the received data, and then applied on the undespread data for the suppression of strong interference. After despreading, optimal beamforming is then performed on the IB despread data to extract the signals of interest (SOIs) from the desired user. Finally, a RAKE receiver with a maximum ratio combining technique is employed to constructively collect all the SOI energies. Since strong interference has been removed in the first stage, the RAKE receiver combines only those SOIs plus negligible interference, leading to robustness against strong interference. Numerical results have shown that substantial improvement can be obtained from the proposed ST-RAKE receiver with the blind IB pre-processing scheme.

  • Pre-Rake Diversity Combining for UWB Systems in IEEE 802.15 UWB Multipath Channel

    Shunsuke IMADA  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2193-2199

    Since Ultra Wideband Impulse Radio (UWB-IR) system can resolve many paths and is thus rich in multipath diversity, the use of Rake diversity combining is very effective. In the Rake diversity combining, the bit error rate (BER) is improved with the increase of the number of fingers. The Pre-Rake diversity combining is known as another technique to achieve the performance equivalent to the Rake diversity combining without increasing the receiver complexity. In the Pre-Rake diversity combining, the transmitted signals are scaled and delayed according to the delay and strength of the multipath. In this paper, we propose Pre-Rake diversity combining techniques for UWB systems, All-Pre-Rake (A-Pre-Rake) diversity combining using perfect channel information, Selective-Pre-Rake (S-Pre-Rake) diversity combining using the information on the L strongest paths, and Partial-Pre-Rake (P-Pre-Rake) diversity combining using the information on the first L paths. From the results of our computer simulation for UWB-IR systems in IEEE 802.15 UWB multipath channel model, we show that the proposed Pre-Rake diversity combining techniques are effective for the UWB-IR systems to achieve good error rate performance, while keeping the complexity of the receiver low. We also show that the S-Pre-Rake diversity combining is effective to achieve good error rate performance with less channel information.

  • Theoretical Study of Site Selection Diversity Transmission in DS-CDMA Cellular Mobile Radio

    Mahbub ALAM  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2202-2206

    Single cell reuse of the same frequency, which is possible in DS-CDMA cellular systems, yields the option of site diversity to increase link capacity. In this letter, a generalized case of site diversity transmission is considered where multiple base stations (BS's) are involved in weighted transmissions with constant total transmit power to a target mobile station (MS). A general equation of conditional bit error rate (BER) is derived based on the model of weighted transmissions combined with antenna diversity reception and rake combining. It turns out theoretically that the optimum set of weights to maximize forward link capacity makes site selection diversity transmission (SSDT) the best performer. This theoretical analysis is confirmed by performance evaluation based on the Monte-Carlo simulation.

  • RAKE-SOVA Equalization for Multi-Code CDMA System with Low Spreading Factor

    Junhui ZHAO  Dongming WANG  Xiaohu YOU  Yun Hee KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2087-2092

    In CDMA system, the RAKE receiver is commonly used to attain diversity gain by taking advantage of the good correlation properties of the spreading codes. However, at low spreading gains the good correlation properties of the spreading codes are lost and the RAKE receiver performance is severely degraded by intersymbol interference (ISI) due to the interpath interference (IPI). In case of multi-code CDMA system, there are exist multi-code interference (MCI). In order to suppress ISI and MCI, a novel receiver based on soft-output viterbi algorithm (SOVA) equalization is proposed in this paper. The SOVA equalization is applied to symbol sequences after RAKE combining and MCI cancellation to effectively eliminate the ISI during transmission of high rate data in wideband DS-CDMA systems. Simulation results show that the proposed RAKE-SOVA receiver significantly outperform the traditional RAKE and RAKE-VA receivers.

  • Systolic OMF-RAKE: Linear Interference Canceller Utilizing Systolic Array for Mobile Communications

    Thet Htun KHINE  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2128-2135

    As a blind linear-interference-canceller for DS-CDMA mobile communications, the orthogonal matched filter (OMF) minimizes the power of the output while maintaining constant power of the desired signal in the output. This paper studies the extension of OMF to an RAKE receiver (OMF-RAKE), which adaptively controls the steering vectors that determine the constraint. It also applies the QR-RLS algorithm to estimate the OMF-RAKE parameters and investigates a hardware implementation that employs a systolic array. Computer simulations show that OMF-RAKE with the QR-RLS algorithm and the systolic array structure can reduce the computational complexity to about a half that of the conventional RLS-type algorithm without degrading the BER.

  • A More Accurate Analysis of Interference for Rake Combining on DS-CDMA Forward Link in Mobile Radio

    Kaibin HUANG  Fumiyuki ADACHI  Yong Huat CHEW  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    654-663

    In this paper, we improve the performance analysis of the Rake receiver for the DS-CDMA forward link using long random spreading sequences (RSS's) by more accurately evaluating the correlation between the various interference terms. We also extend the analysis to the case of short (periodic) RSS. The accuracy of the expressions obtained in our analysis is verified by computer simulation. We show that for a given normalized spreading factor, the bit error rate (BER) performance of the Rake receiver is the same for BPSK and QPSK data modulation. We also show that when the channel delay spread is smaller than a data symbol duration, the CDMA receiver has similar BER performance for long and short RSS's. However, for large delay spread, the employment of short RSS's may result in severe performance degradation.

  • Frequency-Domain Pre-Rake Transmission for DSSS/TDD Mobile Communications Systems

    Fumiyuki ADACHI  Kazuaki TAKEDA  Hiromichi TOMEBA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    784-787

    In this Letter, a frequency-domain pre-rake transmission is presented for a direct sequence spread spectrum with time division duplex (DSSS/TDD) system under a frequency-selective fading channel. The mathematical relationship between frequency-domain and time-domain pre-rake transmissions is discussed. It is confirmed by the computer simulation that, similar to the time-domain pre-rake transmission, frequency-domain pre-rake transmission can improve the bit error rate (BER) performance. The frequency-domain pre-rake transmission shows only slight performance degradation compared to the frequency-domain rake reception for large SF.

  • A Generalized Performance Study of DS-CDMA Uplink/Downlink Receivers in Nakagami Wideband Fading Channel

    Mohammed ABDEL-HAFEZ  Fatih ALAGOZ  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:1
      Page(s):
    333-344

    In this paper, we consider a mobile system consisting of a single isolated circular cell with K independent users simultaneously sharing the channel using binary DS-CDMA to establish a full duplex channel with the base station. Both coherent and differential detection RAKE receivers with Maximal Ratio Combining (MRC) techniques are considered. The performance of two uplink/downlink receivers in Nakagami wideband fading channel is studied. Our approach relies on the use of total instantaneous interference power calculations instead of the use of average power approximations. We analyzed and derived new exact formulae for bit error probabilities for the considered system, and presented a set of numerical results both for the exact formulae and Gaussian approximation. The performance comparisons suggest that the exact formulae provide superior performance to Gaussian approximation especially at low number of users and either high fading parameters of the desired user or low fading parameters of the MAIs.

21-40hit(93hit)