The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPECT(1024hit)

541-560hit(1024hit)

  • Robust Speech Recognition by Model Adaptation and Normalization Using Pre-Observed Noise

    Satoshi KOBASHIKAWA  Satoshi TAKAHASHI  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    422-429

    Users require speech recognition systems that offer rapid response and high accuracy concurrently. Speech recognition accuracy is degraded by additive noise, imposed by ambient noise, and convolutional noise, created by space transfer characteristics, especially in distant talking situations. Against each type of noise, existing model adaptation techniques achieve robustness by using HMM-composition and CMN (cepstral mean normalization). Since they need an additive noise sample as well as a user speech sample to generate the models required, they can not achieve rapid response, though it may be possible to catch just the additive noise in a previous step. In the previous step, the technique proposed herein uses just the additive noise to generate an adapted and normalized model against both types of noise. When the user's speech sample is captured, only online-CMN need be performed to start the recognition processing, so the technique offers rapid response. In addition, to cover the unpredictable S/N values possible in real applications, the technique creates several S/N HMMs. Simulations using artificial speech data show that the proposed technique increased the character correct rate by 11.62% compared to CMN.

  • Robust Speech Recognition by Combining Short-Term and Long-Term Spectrum Based Position-Dependent CMN with Conventional CMN

    Longbiao WANG  Seiichi NAKAGAWA  Norihide KITAOKA  

     
    PAPER-ASR under Reverberant Conditions

      Vol:
    E91-D No:3
      Page(s):
    457-466

    In a distant-talking environment, the length of channel impulse response is longer than the short-term spectral analysis window. Conventional short-term spectrum based Cepstral Mean Normalization (CMN) is therefore, not effective under these conditions. In this paper, we propose a robust speech recognition method by combining a short-term spectrum based CMN with a long-term one. We assume that a static speech segment (such as a vowel, for example) affected by reverberation, can be modeled by a long-term cepstral analysis. Thus, the effect of long reverberation on a static speech segment may be compensated by the long-term spectrum based CMN. The cepstral distance of neighboring frames is used to discriminate the static speech segment (long-term spectrum) and the non-static speech segment (short-term spectrum). The cepstra of the static and non-static speech segments are normalized by the corresponding cepstral means. In a previous study, we proposed an environmentally robust speech recognition method based on Position-Dependent CMN (PDCMN) to compensate for channel distortion depending on speaker position, and which is more efficient than conventional CMN. In this paper, the concept of combining short-term and long-term spectrum based CMN is extended to PDCMN. We call this Variable Term spectrum based PDCMN (VT-PDCMN). Since PDCMN/VT-PDCMN cannot normalize speaker variations because a position-dependent cepstral mean contains the average speaker characteristics over all speakers, we also combine PDCMN/VT-PDCMN with conventional CMN in this study. We conducted the experiments based on our proposed method using limited vocabulary (100 words) distant-talking isolated word recognition in a real environment. The proposed method achieved a relative error reduction rate of 60.9% over the conventional short-term spectrum based CMN and 30.6% over the short-term spectrum based PDCMN.

  • Experimental Evaluation of the Super Sweep Spectrum Analyzer

    Masao NAGANO  Toshio ONODERA  Mototaka SONE  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    782-790

    A sweep spectrum analyzer has been improved over the years, but the fundamental method has not been changed before the 'Super Sweep' method appeared. The 'Super Sweep' method has been expected to break the limitation of the conventional sweep spectrum analyzer, a limit of the maximum sweep rate which is in inverse proportion to the square of the frequency resolution. The superior performance of the 'Super Sweep' method, however, has not been experimentally proved yet. This paper gives the experimental evaluation on the 'Super Sweep' spectrum analyzer, of which theoretical concepts have already been presented by the authors of this paper. Before giving the experimental results, we give complete analysis for a sweep spectrum analyzer and express the principle of the super-sweep operation with a complete set of equations. We developed an experimental system whose components operated in an optimum condition as the spectrum analyzer. Then we investigated its properties, a peak level reduction and broadening of the frequency resolution of the measured spectrum, by changing the sweep rate. We also confirmed that the experimental system satisfactorily detected the spectrum at least 30 times faster than the conventional method and the sweep rate was in proportion to the bandwidth of the base band signal to be analyzed. We proved that the 'Super Sweep' method broke the restriction of the sweep rate put on a conventional sweep spectrum analyzer.

  • Enhancement of Sound Sources Located within a Particular Area Using a Pair of Small Microphone Arrays

    Yusuke HIOKA  Kazunori KOBAYASHI  Ken'ichi FURUYA  Akitoshi KATAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:2
      Page(s):
    561-574

    A method for extracting a sound signal from a particular area that is surrounded by multiple ambient noise sources is proposed. This method performs several fixed beamformings on a pair of small microphone arrays separated from each other to estimate the signal and noise power spectra. Noise suppression is achieved by applying spectrum emphasis to the output of fixed beamforming in the frequency domain, which is derived from the estimated power spectra. In experiments performed in a room with reverberation, this method succeeded in suppressing the ambient noise, giving an SNR improvement of more than 10 dB, which is better than the performance of the conventional fixed and adaptive beamforming methods using a large-aperture microphone array. We also confirmed that this method keeps its performance even if the noise source location changes continuously or abruptly.

  • A 3.2-GHz Down-Spread Spectrum Clock Generator Using a Nested Fractional Topology

    Ching-Yuan YANG  Chih-Hsiang CHANG  Wen-Ger WONG  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    497-503

    A high-speed triangular-modulated spread-spectrum clock generator using a fractional phase-locked loop is presented. The fractional division is implemented by a nested fractional topology, which is constructed from a dual-modulus divide-by-(N-1/16)/N divider to divide the VCO outputs as a first division period and a fractional control circuit to establish a second division period to cause the overall fractional division. The dual-modulus divider introduces a delay-locked-loop network to achieve phase compensation. Operating at the frequency of 3.2 GHz, the measured peak power reduction is around 16 dB for a deviation of 0.37% and a frequency modulation of 33 kHz. The circuit occupies 1.41.4 mm2 in a 0.18-µm CMOS process and consumes 52 mW.

  • A General Model for Performance Evaluation in DS-CDMA Systems with Variable Spreading Factors

    Franco CHIARALUCE  Ennio GAMBI  Giorgia RIGHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    466-478

    This paper extends previous analytical approaches for the study of CDMA systems to the relevant case of multipath environments where users can operate at different bit rates. This scenario is of interest for the Wideband CDMA strategy employed in UMTS, and the model permits the performance comparison of classic and more innovative spreading signals. The method is based on the characteristic function approach, that allows to model accurately the various kinds of interferences. Some numerical examples are given with reference to the ITU-R M.1225 Recommendations, but the analysis could be extended to different channel descriptions.

  • Applications of Optical Image Processing Technique for Steel Mill Non-contacting Conveyance System Operations

    Cheng-Tsung LIU  Yung-Yi YANG  Sheng-Yang LIN  

     
    PAPER-Optoelectronics

      Vol:
    E91-C No:2
      Page(s):
    187-192

    This paper is aimed to present the design and feasibility investigations of adopting the available on-site optical inspection system, which is commonly used for steel plate dimension measurement, to supply on-line dynamic gap measurements of a non-contacting conveyance structure in a steel mill. Adequate software and hardware implementations based on digital image processing techniques have been adapted to the entire system formulations and estimations. Results show that the system can supply accurate and rapid gap measurements and thus can fulfill the design and operational objectives.

  • Outage Performance of Cognitive Radio with Multiple Receive Antennas

    Qinghai YANG  Shaoyi XU  Kyung Sup KWAK  

     
    PAPER-Spectrum Sensing

      Vol:
    E91-B No:1
      Page(s):
    85-94

    Outage performance of cognitive radios is analyzed in this paper. The scenario under consideration requires the cognitive radio to sense whether the primary user (PU) link is free (i.e. a spectrum hole exists) before making an active transmission using that link. Multiple antennas are available at the cognitive radio link to provide array gains at the sensing stage. We derive a closed-form expression of the outage probability for cognitive transmission by classifying it into several cases. A sensing threshold is deduced according to the PU arrival model illustrated in this paper. Simulation results verify our analysis.

  • Asynchronous, Decentralized DS-CDMA Using Feedback-Controlled Spreading Sequences for Time-Dispersive Channels

    Teruhiko MIYATAKE  Kazuki CHIBA  Masanori HAMAMURA  Shin'ichi TACHIKAWA  

     
    PAPER-Spectrum Sharing

      Vol:
    E91-B No:1
      Page(s):
    53-61

    We propose a novel asynchronous direct-sequence code-division multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.

  • Direct-Sequence/Spread-Spectrum Communication System with Sampling Rate Selection Diversity

    Yohei SUZUKI  Anas M. BOSTAMAM  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    267-273

    In this paper, sampling rate selection diversity (SRSD) scheme for Direct-Sequence/Spread-Spectrum (DS/SS) is proposed. In DS/SS communication systems, oversampling may be employed to increase the signal-to-noise ratio (SNR). However, oversampling enlarges the power consumption because signal processing of the receiver has to be carried out at a higher clock rate. Higher sampling rate does not always maximize the SNR. In the proposed SRSD scheme, the power consumption can be reduced by selecting the optimum sampling rate depending on the characteristics of the channel. The proposed SRSD scheme can also reduce the BER more than the conventional oversampling scheme under certain channel conditions.

  • Location and Propagation Status Sensing of Interference Signals in Cognitive Radio

    Kanshiro KASHIKI  Mitsuo NOHARA  Satoshi IMATA  Yukiko KISHIKI  

     
    PAPER-Spectrum Sensing

      Vol:
    E91-B No:1
      Page(s):
    77-84

    In a Cognitive Radio system, it is essential to recognize and avoid sources of interference signals. This paper describes a study on a location sensing scheme for interference signals, which utilizes multi-beam phased array antenna for cognitive wireless networks. This paper also elucidates its estimation accuracy of the interference location for the radio communication link using an OFDM signal such as WiMAX. Furthermore, we use the frequency spectrum of the received OFDM interference signal, to create a method that can estimate the propagation status. This spectrum can be monitored by using a software defined radio receiver.

  • MIMO Spatial Spectrum Sharing for High Efficiency Mesh Network

    Fumie ONO  Kei SAKAGUCHI  

     
    PAPER-Spectrum Sharing

      Vol:
    E91-B No:1
      Page(s):
    62-69

    In this paper, an architecture of MIMO mesh network which avoids co-channel interference and supplies link multiplexing simultaneously, namely MIMO spatial spectrum sharing, is proposed. As a MIMO transmission scheme, linear (such as zero-forcing) and nonlinear (such as dirty paper coding and successive interference cancellation) MIMO algorithm are developed for the proposed mesh network. It is found from numerical analysis that the proposed MIMO mesh network achieves significantly higher channel capacity than that of conventional mesh networks.

  • Cognitive Implementation of Chirp Waveform in UWB System

    Hanbing SHEN  Weihua ZHANG  Kyung Sup KWAK  

     
    LETTER-Spectrum Sharing

      Vol:
    E91-B No:1
      Page(s):
    147-150

    Cognitive Radios (CR) can recognize the communication environment and switch its communication scheme to more efficiently and flexibly utilize the radio spectrum. The performance of ultra wideband (UWB) degrades if interference is not suppressed properly. We propose here a series of adaptive chirp waveforms in UWB systems. By designing waveform shaping of both linear chirp and non-linear cases, we avoid the estimated spectrum of the on-going applications without the necessity of notch filters, and thus reduce the system complexity. We evaluate system performance of the proposed scheme by simulations and verify that the proposed scheme is a candidate for cognitive UWB systems.

  • New Code Set for DS-UWB

    Sang-Hun YOON  Daegun OH  Jong-Wha CHONG  Kyung-Kuk LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3721-3723

    In this paper, we propose a new code set which has very low spectral peak to average ratio (SPAR) and good correlation properties for DS-UWB. The codes which have low SPAR are suitable for DS-UWB system which operates in UWB (3.110.4 GHz) because they can utilize more power than high SPAR codes can do. And, in order to reduce inter symbol interference (ISI) and inter piconet interferences, the codes which have good auto- and cross-correlation properties must be used. In this paper, we propose three items; (1) a new code generation method which can generate good SPAR and auto-correlation codes, (2) code selection criteria, and (3) a code set, which has been selected according to the proposed selection criteria. The proposed code set has SPAR reduced about 0.22 dB and GMF improved by 30% compared to the previous code set while it is maintaining almost same cross-correlation properties. Each code of the proposed code set, therefore, has gained 1.43 dB SIR on an average compared to that of the previous code set.

  • Defect Detection of TFT-LCD Image Using Adapted Contrast Sensitivity Function and Wavelet Transform

    Jong-Hwan OH  Woo-Seob KIM  Chan-Ho HAN  Kil-Houm PARK  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2131-2135

    The thin film transistor liquid crystal display (TFT-LCD) image has nonuniform brightness, which is a major difficulty in finding the Mura defect region. To facilitate Mura segmentation, globally widely varying background signal must be flattened and then Mura signal must be enhanced. In this paper, Mura signal enhancement and background-signal-flattening methods using wavelet coefficient processing are proposed. The wavelet approximation coefficients are used for background-signal flattening, while wavelet detail coefficients are employed to magnify the Mura signal on the basis of an adapted contrast sensitivity function (CSF). Then, for the enhanced image, trimodal thresholding segmentation technique and a false-region elimination method based on the human visual system (HVS) are employed for reliable Mura segmentation. The experimental results show that the proposed algorithms produce promising results and can be applied to automated inspection systems for finding Muras in a TFT-LCD image.

  • Improvement of Measurement Method for Luminance Distribution of Electron Beam Spot in Color Display Tubes

    Naoki SHIRAMATSU  

     
    PAPER

      Vol:
    E90-C No:11
      Page(s):
    2094-2099

    A method for measuring the luminance distribution of an electron beam spot was described, which is fundamental to evaluate the resolution of a color display tube. First, to achieve high sensitivity and wide dynamic range identical to those of visual inspection, we proposed the use of an ICCD camera for imaging and two levels of sensitivity. With that method, we were able to measure the luminance distribution of an electron beam spot over a range of currents that extends from the extremely weak cathode current region to large current that correspond to the peak luminance. Specifically, we were able to measure the entire distribution shape from the base to the peak for beam spots in the cathode current range from 20 µA to 300 µA, while compensating the absolute luminance level. Second, a reconstruction algorithm of entire beam distribution from the shape of the masked part of the beam was also proposed, in which shift error is compensated to reduce the variance in measurement results caused by jitter noise in the conventional image processing method. That algorithm improves the reproducibility of repeated measurements. Specifically, a function for estimating the actual shift from the first-order moment of the image was incorporated into the spot shape reconstruction algorithm, resulting in a reduction of the standard deviation for repeated measurements of the horizontal beam spot diameter at 5% intensity from 0.02 mm to 0.005 mm.

  • Voice Navigation in Web-Based Learning Materials--An Investigation Using Eye Tracking

    Kiyoshi NOSU  Ayako KANDA  Takeshi KOIKE  

     
    PAPER-Human-computer Interaction

      Vol:
    E90-D No:11
      Page(s):
    1772-1778

    Eye tracking is a useful tool for accurately mapping where and for how long an individual learner looks at a video/image, in order to obtain immediate information regarding the distribution of a learner's attention among the elements of a video/image. This paper describes a quantitative investigation into the effect of voice navigation in web-based learning materials.

  • Image Enhancement for Automated TFT-LCD Inspection System Using Estimation of Intensity Flow

    Woo-Seob KIM  Jong-Hwan OH  Chan-Ho HAN  Kil-Houm PARK  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2126-2130

    We propose a filtering method for optimal estimation of TFT-LCD's surface region except defect's region. To estimate the non-uniform intensity variation on TFT-LCD surface region, the 4-directional Gaussian filter based on image pyramid structure is proposed. The experimental result verified the proposed method's performance

  • Coloured Petri Net Based Modelling and Analysis of Multiple Product FMS with Resource Breakdowns and Automated Inspection

    Tauseef AIZED  Koji TAKAHASHI  Ichiro HAGIWARA  

     
    PAPER-Concurrent Systems

      Vol:
    E90-A No:11
      Page(s):
    2593-2603

    The objective of this paper is to analyze a pull type multi-product, multi-line and multi-stage flexible manufacturing system whose resources are subject to planned and unplanned breakdown conditions. To ensure a continual supply of the finished products, under breakdown conditions, parts/materials flow through alternate routes exhibiting routing flexibility. The machine resources are flexible in this study and are capable of producing more than one item. Every machining and assembly station has been equipped with automated inspection units to ensure the quality of the products. The system is modelled through coloured Petri net methodology and the impact of input factors have been shown on the performance of the system. The study has been extended to explore near-optimal conditions of the system using design of experiment and response surface methods.

  • OFDM Interference Suppression for DS/SS Systems Using Complex FIR Filter

    Yuki SHIMIZU  Yukitoshi SANADA  

     
    PAPER-OFDM/CDMA

      Vol:
    E90-A No:11
      Page(s):
    2388-2394

    In this paper, the performance of narrow band interference (NBI) rejection scheme for direct sequence spread spectrum (DS/SS) is analyzed. A 2-tapped complex FIR filter is used for filtering a chip code to suppress NBI. In this system, the spectrum of transmitted signal has a null at an arbitrary frequency. By choosing filter coefficients, the authors place this null at NBI center frequency to mitigate the effect of NBI. In this paper, an OFDM signal is considered as NBI. The performance of this scheme is theoretically analyzed by introducing Queueing model, and validated via simulation.

541-560hit(1024hit)