The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPECT(1024hit)

981-1000hit(1024hit)

  • Analysis of Characteristics of a Cherenkov Laser for an Electromagnetic Wave with Continuous Frequency Spectrum

    Katsuhiko HORINOUCHI  Masahiro SATA  Toshiyuki SHIOZAWA  

     
    PAPER-Transient Field

      Vol:
    E76-C No:10
      Page(s):
    1481-1486

    The characteristics of an open-boundary Cherenkov laser for an electromagnetic wave with a continuous frequency spectrum are numerically analyzed. A given power spectral density for the input wave is found to get concentrated around the frequency where the spatial growth rate is maximum, as it grows along the electron beam. In addition, the frequency for the maximum growth rate is found to shift gradually to higher values. Furthermore, by gradually increasing the permittivity of the dielectric waveguide along it, we can always get the maximum power spectral density at the frequency where the spatial growth rate initially becomes maximum at the input.

  • Solder Joint Inspection Using Air Stimulation Speckle Vibration Detection Method and Fluorescence Detection Method

    Takashi HIROI  Kazushi YOSHIMURA  Takanori NINOMIYA  Toshimitsu HAMADA  Yasuo NAKAGAWA  Shigeki MIO  Kouichi KARASAKI  Hideaki SASAKI  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1144-1152

    The fast and highly reliable method reported here uses two techniques to detect all types of defects, such as unsoldered leads, solder bridges, and misalignes leads in the minute solder joints of high density mounted devices. One technique uses external force applied by an air jet that vibrates or shifts unsoldered leads. The vibration and shift is detected as a change in the speckle pattern produced by laser illumination of the solder joints. The other technique uses fluorescence generated by short-wavelength laser illumination. The fluorescence from a printed circuit board produces a silhouette of the solder joint and this image is processed to detect defects. Experimental results show that this inspection method detects all kinds of defects accurately and with a very low false alarm rate.

  • Some Ideas of Modulation Systems for Quantum Communications

    Masao OSAKI  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-A No:9
      Page(s):
    1449-1457

    A coherent communication system using squeezed light is one of candidates for a realization of super-reliable systems. In order to design such a system, it is essential to understand and to analyze modulators mathematically. However, quantum noise of squeezed light has a colored spectrum which changes with respect to phase of a local laser. Therefore the optimization of the relationship between signal and quantum noise spectrums is required at a modulator to obtain the ultimate performance of the communication system. In this paper, some ideas of modulators for squeezed light are proposed and their spectrum transformations are given. After the brief summary of squeezed quantum noise, a new concept which originates from the restriction of the local laser phase is applied to it. This concept makes a problem originated from a colored quantum noise spectrum more serious. It results in the optimization problem for the relationship between the quantum noise spectrum and signal power spectrum. The solution of this problem is also given under the restriction of local laser phase. As a result, a general design theory for coherent communication system using the squeezed light is given.

  • Meaning of Maximum and Mean-Square Cross-Correlation as a Performance Measure for CDMA Code Families and Their Influence on System Capacity

    Kari H. A. KÄRKKÄINEN  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    848-854

    It is concluded from numerical examples for the well-known linear PN sequence families of a large range of periods that the mean-square cross-correlation value between sequences is the dominating parameter to the average signal-to-noise power ratio performance of an asynchronous direct-sequence (DS) code-division multiple-access (CDMA) system. The performance parameters derived by Pursley and Sarwate are used for numerical evaluation and the validity of conclusion is supported by reviewing the other related works. The mean-square periodic cross-correlation takes the equal value p (code period) for the known CDMA code families. The equal mean-square cross-correlation performance results from the basic results of coding theory.

  • Pre-RAKE Diversity Combination for Direct Sequence Spread Spectrum Mobile Communications Systems

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1008-1015

    A new method of multipath diversity combination is proposed for Direct Sequence Spread Spectrum (DS-SS) mobile communications. In this method, the transmitted signal from the base staion is the sum of a number of the same spread signal, each one delayed and scaled according to the delay and the strength of the multipaths of the transmission channel. As a result the received signal at the mobile unit will already be a Rake combination of the multipath signals. This new method is called Pre-Rake diversity combination because the Rake diversity combination process is performed before transmission By this method the size and complexity of the mobile unit can be minimized, and the unit is made as simple as a non-combining single path receiver. A theoretical examination of the Signal to Noise Ratio (SNR) and the Bit Error Rate (BER) results for the traditional Rake and the Pre-Rake combiners as well as computer simulations show that the performance of the Pre-Rake combiner is equivalent to that of the Rake combiner.

  • Asynchronous Multiple Access Performances of Frequency-Time-Hopped Multi-Level Frequency-Time

    Kohji ITOH  Makoto ITAMI  Kozo KOMIYA  Yasuo SOWA  Keiji YAMADA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    913-920

    Assuming application to the mobile multiple-access communication, chip-asynchronous mobile-to-base performances of FH/FTH (Frequency-Time-Hopped)-MFTSK (Multi-level Frequency-Time Shift Keying) systems are investigated. Analytical expressions are obtained for the probabilities of false detection and missed detection of signal elements, assuming independent and asynchronous arrival of each of the signal elements with Rayleigh fading and optional AWG noise. Using the result or by simulation and employing dual-k coding, parameter optimization was carried out to obtain the maximum spectrum efficiency. The results of the noisy case analysis and simulation show high noise-robustness of the FTH systems. For a given value of information transmission rate the optimized FTH-MFTSK gives an effectively constant spectrum efficiency for a wide range of the number Kf of frequency chips. As a result, FTH-MFTSK well outperforms FTH-MFSK at any, especially small value of Kf. Relative to the overall optimum FH-MFSK, FTH-MFSK systems show typically around 20% of degradation in spectrum efficiency even with one-eighth of Kf. Compared with FH-MFSK, accordingly, FTH-MFTSK systems allow the designer to reduce, without any degradation in multiple-access performances, the number of frequency chips to the minimum value tolerated by the frequency selective fading characteristics and the time chip duration requirement imposed by the signal-to-noise ratio margin and the transmitter peak power rating.

  • Optimized Wideband System for Unbiased Mobile Radio Channel Sounding with Periodic Spread Spectrum Signals

    Tobias FELHAUER  Paul W. BAIER  Winfried KÖNIG  Werner MOHR  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1016-1029

    In this paper, an optimized wideband channel sounder designed for measuring the time variant impulse response of outdoor radio channels in the frequency range 1800-2000 MHz is presented. Prior to hardware implementation the system was first modelled on a high performance supercomputer to enable the system designer to optimize the digital signal processing algorithms and the parameters of the hardware components by simulation. It is shown that the proposed measuring system offers a significantly larger amplitude resolution, i.e. dynamic range, than conventional systems applying matched filtering. This is achieved by transmitting digitally generated periodic spread spectrum test signals adjusted to amplifier non-linearities and by applying optimum unbiased estimation instead of matched filtering in the receiver. A further advantage of the hardware implementation of the proposed system compared to conventional systems [5]-[7] is its high flexibility with respect to measuring bandwidth, period of the test signal and sounding rate. The main features of the optimized system are described and first measurement results are presented.

  • Capacity Analysis of a Cellular Direct Sequence Code Division Multiple Access System with Imperfect Power Control

    Ramjee PRASAD  Michel G. JANSEN  Adriaan KEGEL  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    894-905

    The capacity of a cellular direct sequence code division multiple access system is investigated in situations with and without power control for both the reverse link (from mobile to base station) and the forward link (from base station to mobile). The capacity is defined as the number of simultaneous users per cell with a prespecified performance. A theoretical analysis of the effect of imperfect power control on the reverse link capacity is presented using an analytical model. To investigate the reverse link capacity without any form of power control, a general spatial user distribution is developed which is very suitable for analytical study of any multiple access system with the near-far effect problem. The performance of the reverse link of a CDMA system is also evaluated considering the users located in surrounding cells. Finally, the forward link capacity is studied considering multiple cells. Two possible forward power control schemes, namely carrier-to-interference ratio driven and distance driven systems, are discussed.

  • Performance of Asynchronous Band-Limited DS/SSMA Systems

    Takafumi SHIBATA  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    921-928

    This paper discusses the performance of asynchronous direct-sequence spread-spectrum multiple-access systems using binary or quaternary phase-shift keyed signals with the strict bandwidth-limitation by Nyquist filtering. The signal-to-noise plus interference ratio (SNIR) at the output from the correlation receiver is derived analytically taking the cross-correlation characteristics of spreading sequences into account, and also an approximated SNIR of a simple form is presented for the systems employing Gold sequences. Based on the analyzed result of SNIR, bit error rate performance and spectral efficiency are also estimated.

  • Field Tests of a Spread Spectrum Land Mobile Satellite Communication System

    Tetsushi IKEGAMI  Shinichi TAIRA  Yoshiya ARAKAKI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    996-1001

    The bit error performance of a Direct Sequence Spread Spectrum Communication system in actual land mobile satellite channel is evaluated with experiments. Field test results with the ETS-V satellite in urban and suburban environments at L-band frequency show that this land mobile satellite channel of 3MHz bandwidth can be seen as a non-frequency selective Rician fading channel as well as shadowing channel. The bit error performance can be estimated from signal power measurement as in the case of narrow band modulation signals.

  • Rejection of Narrow-Band Interference in a Delay-Lock Loop Using Prediction Error Filters

    Hiroji KUSAKA  Toshihisa NAKAI  Masahiro KIMURA  Tetsuya NIINO  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    955-960

    A narrowband interference in direct sequence spread spectrum communication systems also affects the characteristics of a delay lock loop. In this paper, the delay errors of a baseband delay lock loop (DLL) in the presence of the interference which consists of a narrowband Gaussian noise and several tones are examined, and when a filter is used to reject the interference, the characteristics of the DLL are analyzed using the Fourier method. Furthermore, from the calculation results of the delay error in case where a prediction error filter with two-sided taps is used as the rejection filter, it is shown that the filter is necessary to keep the DLL in the lock-on state.

  • Performance of a Direct Sequence Spread Spectrum Multiple Access System Utilizing Unequal Carrier Frequencies

    Elvino S. SOUSA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    906-912

    In this paper we determine the performance of a direct sequence spread spectrum multiple access system where the users utilize different carrier frequencies. This scheme is applicable to a system, such as an indoor wireless communication system utilizing very high frequencies, where the available bandwidth is so large that it is not feasible to spread the signal over the whole band. The multi-user interference is modeled as a compound Gaussian random variable and expressions are found for the variance of the interference as a function of relative phase and frequency parameters. In addition to different carrier frequencies the analysis also accounts for offsets in the chip clock frequencies, general chip pulse shaping function, and different received signal powers. We give results for the error probability in a multiple access system utilizing BPSK, QPSK, and OQPSK modulation.

  • Characteristics of M-Ary/Spread Spectrum Multiple Access Communication Systems Using Co-Channel Interference Cancellation Techniques

    Shin'ichi TACHIKAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    941-946

    This paper proposes M-ary/SSMA using co-channel interference cancellation techniques and presents comparisons with conventional DS/SSMA and other systems. First, ideal models of DS/SSMA and M-ary/SSMA using co-channel interference cancellation techniques are analyzed. In the cancellation circuit of DS/SSMA, when an error bit of other user's data arises, the received signal is degraded by "voltage addition" of the error sequence. While, in M-ary/SSMA, it is degraded by only "power addition" of the error code. Therefore, though the circuits are complicated, bit error rate of the proposed system can be improved considerably. Further, improvement of spectral efficiency in these systems are shown for several bit error rate and chip waveforms.

  • Novel Narrowband Interference Rejection for an Asynchronous Spread Spectrum Wireless Modem Using a SAW Convolver

    Hiroyuki NAKASE  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    947-954

    An asynchronous spread spectrum (SS) wireless modem has been implemented using an efficient ZnO-SiO2-Si surface acoustic wave (SAW) convolver. The modem is based on a direct-sequence/frequency-shift-keying (DS/FSK) method for the modulation. The demodulation is carried out asynchronously utilizing the coherent correlation characteristics of the SAW convolver. In order to improve the narrowband interference rejection capability, we propose a new technique based on the reference signal control. A notched-reference-signal circuit and a self-convolution canceler are implemented in the SS modem for the reference signal control. It was found that the antijam capability for narrowband interference is at least -24dB of desired-to-undesired power ratio (D/U); the improvement of the antijam capability is 16dB up as compared with our previous SS modem.

  • Time Division Duplex Method of Transmission of Direct Sequence Spread Spectrum Signals for Power Control Implementation

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1030-1038

    A time division duplex (TDD) direct sequence spread spectrum communication (DS-SS) system is proposed for operation in channels with Rayleigh fading characteristics. It is shown that using the TDD method is advantageous because the devices can be designed more simply, the method is more frequency efficient and as a result the systems will be less costly and less power consuming. It is also shown that an efficient power control method can be implemented for the TDD systems. In contrast to the traditional access techniques such as frequency division multiple access (FDMA) and time division multiple access (TDMA) that are mainly frequency limited, the code division multiple access (CDMA) method which uses the DS-SS technique is interference limited. This means that an efficient power control method can increase the capacity of the DS-SS communications system. Computer simulations are used to evaluate the performance of the TDD power control method. Performance improvement of order of 12 to 17dB at bit error rate (BER) of 10-3 can be obtained for different methods of power control. The advantages of the TDD technique for the future DS-SS systems operating in the Industrial, Scientific and Medical (ISM) band are explained in an appendix to this paper.

  • A SAW-Based Spread Spectrum Wireless LAN System

    Kazuyuki TAKEHARA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    990-995

    The spread spectrum system (abbreviated as SS system) is known to be an excellent communication system which resists jamming. Recently, its application to a simplified wireless communication system has been considered to be suited for consumer communication. In Japan, SS wireless LAN system has got the approval on 2.4GHz ISM band already. A compact SS transceiver for the SS wireless LAN is realized, whose data ratio is 230kbps. The SS transceiver is based on a direct sequence for the modulation, and the demodulation is carried out by a specially developed SAW device. In the first part of this paper, the technical conditions of the SS wireless LAN are mentioned. Then the SAW device and the principle of the demodulation are discussed. Finally, the configuration of the SS transceiver and the protocol of the SS wireless LAN are presented.

  • Multihopping and Decoding of Error-Correcting Code for MFSK/FH-SSMA Systems

    Tetsuo MABUCHI  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    874-885

    This paper investigates a multihopping scheme for MFSK (Multilevel Frequency Shift Keying) /FH-SSMA (Frequency Hopping-Spread Spectrum Multiple Access) system. Moreover, we propose and investigate a modified decoding scheme for the coded MFSK/FH-SSMA system. In this multi-hopped MFSK/FH-SSMA system, several hopping frequencies per chip are assigned and transmitted in parallel in order to improve its frequency diversity capability for a fading channel. We theoretically analyze the performance of the multihopped MFSK/FH-SSMA system in a Rayleigh fading channel. Moreover, in the coded MFSK/FH-SSMA system, we propose a modified scheme of the error and erasure decoding of an error-correcting code. The modified decoding scheme utilizes the information of rows having the largest number of entries in the decoded time-frequency matrix. Their BER (Bit Error Rate) performance is evaluated by theoretical analysis in order to show the improvement in user capacity.

  • Adaptive RAKE Receiver for Mobile Communications

    Yukitoshi SANADA  Akihiro KAJIWARA  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1002-1007

    In this paper, we propose an adaptive RAKE receiver, which does not need to send the sounding signals and can track the fluctuations caused by fading. The channel estimation can be done by using a least squares method of the first and second equations suppressing additive noise and tracking the channel fluctuations. It is confirmed by computer simulations that the result has good agreement with theory and the performance is almost same as that of the conventional RAKE with the sounding signals.

  • Synchronous CDMA for Optical Subscriber Systems Using Block-Interleave and Redundancy Code Sequences

    Tetsuya ONODA  Noriki MIKI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    969-983

    A new type of synchronous code division multiple access (S/CDMA) scheme for optical subscriber systems is reported. Passive channel multiplexing is promising for optical subscriber systems because it realizes high system performance at low cost. Unfortunately, passive channel multiplexing suffers from phase differences among the upstream channels, and these differences prevent the usage of traditional synchronous CDMA techniques that reduce cross channel interference. This paper proposes the new technique of block-interleaving & redundancy code sequences to overcome this problem. This combination realizes S/CDMA even in the presence of phase differences and eliminates cross channel interference completely. Therefore, in an optical subscriber system using the new type S/CDMA, the bit error rate performance is independent of phase difference levels and the number of multiplexed channels.

  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

981-1000hit(1024hit)