The search functionality is under construction.

Keyword Search Result

[Keyword] TDMA(91hit)

1-20hit(91hit)

  • Multihop TDMA-Based Wireless Networked Control Systems Robust against Bursty Packet Losses: A Two-Path Approach

    Keisuke NAKASHIMA  Takahiro MATSUDA  Masaaki NAGAHARA  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2019/08/27
      Vol:
    E103-B No:3
      Page(s):
    200-210

    Wireless networked control systems (WNCSs) are control systems whose components are connected through wireless networks. In WNCSs, a controlled object (CO) could become unstable due to bursty packet losses in addition to random packet losses and round-trip delays on wireless networks. In this paper, to reduce these network-induced effects, we propose a new design for multihop TDMA-based WNCSs with two-disjoint-path switching, where two disjoint paths are established between a controller and a CO, and they are switched if bursty packet losses are detected. In this system, we face the following two difficulties: (i) link scheduling in TDMA should be done in such a way that two paths can be switched without rescheduling, taking into account of the constraint of control systems. (ii) the conventional cross-layer design method of control systems is not directly applicable because round-trip delays may vary according to the path being used. Therefore, to overcome the difficulties raised by the two-path approach, we reformulate link scheduling in multihop TDMA and cross-layer design for control systems. Simulation results confirm that the proposed WNCS achieves better performance in terms of the 2-norm of CO's states.

  • RV-MAC: A Reliable MAC Protocol for Multi-Hop VANETs

    Guodong WU  Chao DONG  Aijing LI  Lei ZHANG  Qihui WU  Kun ZHOU  

     
    PAPER-Network

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1626-1635

    With no need for Road Side Unit (RSU), multi-hop Vehicular Ad Hoc NETworks (VANETs) have drawn more and more attention recently. Considering the safety of vehicles, a Media Access Control (MAC) protocol for reliable transmission is critical for multi-hop VANETs. Most current works need RSU to handle the collisions brought by hidden-terminal problem and the mobility of vehicles. In this paper, we proposed RV-MAC, which is a reliable MAC protocol for multi-hop VANETs based on Time Division Multiple Access (TDMA). First, to address the hidden-terminal under the networks with multi-hop topology, we design a region marking scheme to divide vehicles into different regions. Then a collisions avoidance scheme is proposed to handle the collisions owing to channel competition and the mobility of vehicles. Simulation results show that compared with other protocol, RV-MAC can decrease contention collisions by 30% and encounter collisions by 50% respectively. As a result, RV-MAC achieves higher throughput and lower network delay.

  • A TDMA-Based Hybrid Transmission MAC Protocol for Heterogeneous Vehicular Network

    Tianjiao ZHANG  Qi ZHU  Guangjun LIANG  Jianfang XIN  Ziyu PAN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1142-1151

    Vehicular Ad hoc Network (VANET) is an important part of the Intelligent Transportation System (ITS). VANETs can realize communication between moving vehicles, infrastructures and other intelligent mobile terminals, which can greatly improve the road safety and traffic efficiency effectively. Existing studies of vehicular ad hoc network usually consider only one data transmission model, while the increasing density of traffic data sources means that the vehicular ad hoc network is evolving into Heterogeneous Vehicular Network (HetVNET) which needs hybrid data transmission scheme. Considering the Heterogeneous Vehicular Network, this paper presents a hybrid transmission MAC protocol including vehicle to vehicle communication (V2V) and vehicle to infrastructure communication (V2I/I2V). In this protocol, the data are identified according to timeliness, on the base of the traditional V2V and V2I/I2V communication. If the time-sensitive data (V2V data) fail in transmission, the node transmits the data to the base station and let the base station cooperatively transmit the data with higher priority. This transmission scheme uses the large transmission range of base station in an effective manner. In this paper, the queueing models of the vehicles and base station are analyzed respectively by one-dimensional and two-dimensional Markov Chain, and the expressions of throughput, packet drop rate and delay are also derived. The simulation results show that this MAC protocol can improve the transmission efficiency of V2V communication and reduce the delay of V2V data without losing the system performance.

  • A Two-Stage Scheduling to Improve Capacity for Inter-Concentrator Communication in Hierarchical Wireless Sensor Networks

    Yuriko YOSHINO  Masafumi HASHIMOTO  Naoki WAKAMIYA  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    58-69

    In this paper, we focus on two-layer wireless sensor networks (WSNs) that consist of sensor-concentrator and inter-concentrator networks. In order to collect as much data as possible from a wide area, improving of network capacity is essential because data collection applications often require to gather data within a limited period, i.e., acceptable collection delay. Therefore, we propose a two-stage scheduling method for inter-concentrator networks. The proposed method first strictly schedules time slots of links with heavy interference and congestion by exploiting the combination metric of interference and traffic demand. After that, it simply schedules time slots of the remaining sinks to mitigate complexity. Simulation-based evaluations show our proposal offers much larger capacity than conventional scheduling algorithms. In particular, our proposal improves up to 70% capacity compared with the conventional methods in situations where the proportion of one- and two-hop links is small.

  • A TDMA/DCF Hybrid QoS Scheme for Ad Hoc Networks

    Jing LIN  Celimuge WU  Satoshi OHZAHATA  Toshihiko KATO  

     
    PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    42-53

    We propose a QoS scheme for ad hoc networks by combining TDMA and IEEE 802.11 DCF, and present performance evaluation results of the scheme. In the proposed scheme, the channel time is composed of two different periods, specifically TDMA period and DCF period. The TDMA period provides contention free transmission opportunities for QoS flows, and the DCF period provides contention-based access for best effort or low priority flows. We evaluate the proposed scheme for various numbers of TCP flows and different CBR data rates with QualNet simulator. Simulation results show that the protocol is able to provide an efficient solution for QoS control in ad hoc networks.

  • Token-Scheduled High Throughput Data Collection with Topology Adaptability in Wireless Sensor Network

    Jinzhi LIU  Makoto SUZUKI  Doohwan LEE  Hiroyuki MORIKAWA  

     
    PAPER-Network

      Vol:
    E97-B No:8
      Page(s):
    1656-1666

    This paper presents a data gathering protocol for wireless sensor network applications that require high throughput and topology adaptability under the premises of uniform traffic and energy-rich environments. Insofar as high throughput is concerned, TDMA is more suitable than CSMA. However, traditional TDMA protocols require complex scheduling of transmission time slots. The scheduling burden is the primary barrier to topology adaptability. Under the premises of uniform traffic and energy-rich environments, this paper proposes a token-scheduled multi-channel TDMA protocol named TKN-TWN to ease the scheduling burden while exploiting the advantages of TDMA. TKN-TWN uses multiple tokens to arbitrate data transmission. Due to the simplified scheduling based on tokens, TKN-TWN is able to provide adaptability for topology changes. The contention-free TDMA and multi-channel communication afford TKN-TWN the leverage to sustain high throughput based on pipelined packet forwarding. TKN-TWN further associates the ownership of tokens with transmission slot assignment toward throughput optimization. We implement TKN-TWN on Tmote Sky with TinyOS 2.1.1 operating system. Experimental results in a deployed network consisting of 32 sensor nodes show that TKN-TWN is robust to network changes caused by occasional node failures. Evaluation also shows that TKN-TWN is able to provide throughput of 9.7KByte/s.

  • A Pseudo-TDMA MAC Protocol Using Randomly Determined Transmission Times for Landslide Prediction Wireless Sensor Networks

    David ASANO  Daichi KUROYANAGI  Hikofumi SUZUKI  Eiki MOTOYAMA  Yasushi FUWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1449-1456

    Landslides during heavy rainfall cause a great amount of damage in terms of both property and human life. To predict landslide disasters, we designed and implemented a wireless sensor network using our existing highly fault tolerant ad-hoc network. Since many sensors must be used, we propose a new MAC protocol that allows the network to support more sensor terminals. Our protocol is a hybrid CSMA/Psuedo-TDMA scheme which allows the terminals to decide their transmission timing independently in a random fashion. A timing beacon is not required, so power consumption can be reduced. Simulation results show that the number of terminals supported by the network can be greatly increased.

  • A Distributed TDMA-Based Data Gathering Scheme for Wireless Sensor Networks

    Tao LIU  Tianrui LI  Yihong CHEN  

     
    LETTER-Information Network

      Vol:
    E96-D No:9
      Page(s):
    2135-2138

    In this letter, a distributed TDMA-based data gathering scheme for wireless sensor networks, called DTDGS, is proposed in order to avoid transmission collisions, achieve high levels of power conservation and improve network lifetime. Our study is based on corona-based network division and a distributed TDMA-based scheduling mechanism. Different from a centralized algorithm, DTDGS does not need a centralized gateway to assign the transmission time slots and compute the route for each node. In DTDGS, each node selects its transmission slots and next-hop forwarding node according to the information gathered from neighbor nodes. It aims at avoiding transmission collisions and balancing energy consumption among nodes in the same corona. Compared with previous data gathering schemes, DTDGS is highly scalable and energy efficient. Simulation results show high the energy efficiency of DTDGS.

  • A Distributed TDMA Scheduling Algorithm with Distance-Measurement-Based Power Control for Sensor Networks

    Koji SATO  Shiro SAKATA  

     
    PAPER-Network and Communication

      Vol:
    E95-D No:12
      Page(s):
    2879-2887

    This paper proposes a distributed TDMA slot scheduling algorithm with power control, which the slot allocation priority is controlled by distance measurement information. In the proposed scheme, Lamport's bakery algorithm for mutual exclusion is applied for prioritized slot allocation based on the distance measurement information between nodes, and a packet-based transmission power control scheme is combined. This aims at achieving media access control methods which can construct a local network practically by limiting the scope. The proposed scheme can be shown as a possible replacement of DRAND algorithm for Z-MAC scheme in a distance-measurement-oriented manner. The scheme can contribute to the efficient TDMA slot allocation.

  • Implementation of a TDMA Based Wireless Network Coding Prototype System with Ethernet Frame Aggregation

    Nobuaki OTSUKI  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3752-3759

    This paper presents the feasibility of a wireless network coding prototype system based on time division multiple access using the global positioning system to facilitate the time synchronization of wireless nodes. We evaluate the system throughput of the prototype system with wireless network coding and Ethernet frame aggregation in the full buffer traffic environment assuming web browsing and voice over Internet protocol. The experimental results show that the prototype system improves the system throughput by approximately 1.85-fold compared to a system without wireless network coding or aggregation even in a multipath Rician fading environment.

  • An Energy-Balancing Unequal Clustering and TDMA-Like Scheduling Mechanism in Wireless Sensor Networks

    Tao LIU  

     
    LETTER-Network

      Vol:
    E95-B No:12
      Page(s):
    3882-3885

    In wireless sensor networks, unbalanced energy consumption and transmission collisions are two inherent problems and can significantly reduce network lifetime. This letter proposes an unequal clustering and TDMA-like scheduling mechanism (UCTSM) based on a gradient sinking model in wireless sensor networks. It integrates unequal clustering and TDMA-like transmission scheduling to balance the energy consumption among cluster heads and reduce transmission collisions. Simulation results show that UCTSM balances the energy consumption among the cluster heads, saves nodes' energy and so improves the network lifetime.

  • A Minigroup Multicast with Deflected Routing in Multi-Channel Wireless Multimedia Sensor Networks

    Nowon KIM  Kyungran KANG  Young-Jong CHO  

     
    LETTER-Network

      Vol:
    E95-B No:9
      Page(s):
    2939-2943

    Wireless multimedia sensor networks tend to generate a large number of sensing data packets within a short period. A multi-channel TDMA scheme can avoid the hidden terminal problem and and has been shown to achieve higher performance than the CSMA scheme. In order to deliver large volumes of sensing data within a time limit, our scheme for minigroup multicast can improve the performance gain of the multi-channel TDMA by incorporating deflection routing which constrains any intermediate nodes from serving multiple sessions and establishes a new path detour the nodes on the existing path of multicast sessions. Through simulations, we show that, even though the deflection routing builds non-optimal paths, our scheme supports 95% packet delivery ratio and higher throughput than the legacy multicast routing protocol with CSMA-based media access control.

  • Time Slot Assignment Algorithms to Upstream Links for Decreasing Transmission Latency in IEEE 802.16j Networks

    Go HASEGAWA  Shinpei TANAKA  Yoshiaki TANIGUCHI  Hirotaka NAKANO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1793-1801

    In this paper, the authors focus on upstream transmission in TDMA-based IEEE 802.16j and propose two time slot assignment algorithms to decrease end-to-end transmission latency. One of the proposed algorithms assigns time slots considering the hop count from a gateway node, and the other takes the path from the relay node to the gateway node into account. In addition, a restriction in assigning time slots is introduced to reduce the delay at each relay node. The algorithms with the restriction assign later time slots considering the time slot order of links connecting a relay node. The performance of the proposed algorithms is evaluated through simulation experiments from the viewpoints of frame size and end-to-end transmission latency, and it is confirmed that the proposed algorithms achieve small transmission latency regardless of packet generation rate in the network, and decrease the transmission latency by up to 70% compared with the existing algorithm.

  • Parameter Tuning of the Protocol Interference Model Using SINR for Time Slot Assignment in Wireless Mesh Networks

    Gyeongyeon KANG  Yoshiaki TANIGUCHI  Go HASEGAWA  Hirotaka NAKANO  

     
    PAPER-Information Network

      Vol:
    E94-D No:11
      Page(s):
    2191-2200

    In time division multiple access (TDMA)-based wireless mesh networks, interference relationships should be considered when time slots are assigned to links. In graph theory-based time slot assignment algorithms, the protocol interference model is widely used to determine radio interference information, although it is an inaccurate model of actual radio interference. On the other hand, the signal-to-interference-plus-noise-ratio model (SINR model) gives more accurate interference relationships but is difficult to apply to time slot assignment algorithms since the radio interference information cannot be determined before time slot assignment. In this paper, we investigate the effect of the parameters of the protocol interference model on the accuracy of the interference relationships determined using this model. Specifically, after assigning time slots to links based on the protocol interference model with various interference ratios, which is the major parameter of the protocol interference model, we compare the interference relationship among links in the protocol interference and SINR models. Through simulation experiments, we show that accuracy of the protocol interference model is improved by up to 15% by adjusting the interference ratios of the protocol interference model.

  • Throughput Improvement Technique for D-TDMA-Based Vehicular Ad-Hoc Networks

    Mathieu LENOBLE  Kenji ITO  

     
    PAPER-Network

      Vol:
    E94-B No:10
      Page(s):
    2776-2784

    In the decentralized-TDMA (D-TDMA) protocol, the terminals select a free slot based on the frame information (FI) which is a representation of the status of each slot in the network. The FI, however, constitutes a large portion of the packet, which seriously compromises the per-packet transport capacity of the D-TDMA protocol. We therefore propose an opportunistic header management scheme for increasing the number of payload bytes without adversely affecting the performance of the D-TDMA. Our proposal is based on every terminal being able to choose between two techniques for transmitting their data packets. The first, based on the FI redundancies, lets the terminals transmit only the relevant information. The second compresses the FI with a lossless data compressor, i.e. the Huffman algorithm. Computer simulations were conducted for an urban environment in which vehicles are moving. The simulation results show that the proposed technique significantly increases the throughput without degrading the quality of the D-TDMA protocol.

  • Power-Controlled Topology Optimization and Channel Assignment for Hybrid MAC in Wireless Sensor Networks

    Eui-Jik KIM  Sungkwan YOUM  Chul-Hee KANG  

     
    PAPER

      Vol:
    E94-B No:9
      Page(s):
    2461-2472

    This paper presents the design and performance evaluation of a power-controlled topology optimization and channel assignment scheme for Hybrid MAC (abbreviated PTOCA) in wireless sensor networks that require comparatively high data rate communications. In order to maximize the network performance, PTOCA is designed with a cross-layer concept of MAC and network layers, which provides multi-channel TDMA scheduling based on the information of the network topology optimized by transmission power control. The simulation results show that by using the proposed scheme, the network throughput and energy efficiency can be significantly improved. PTOCA is also more effective in improving the network performance when the nodes are uniformly deployed on the sensor field rather than when they are randomly distributed.

  • Priority-Based STDMA Scheduling Algorithm to Enhance Throughput and Fairness in Wireless Mesh Networks

    Nguyen H. TRAN  Choong Seon HONG  Sungwon LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1355-1365

    The aggregate throughput of wireless mesh networks (WMNs) can be significantly improved by equipping the mesh routers with multiple radios tuned to orthogonal channels. Not only the links using orthogonal channels can be activated at a time, but some links in the same channel also can be activated concurrently if the Signal-to-Interference-and-Noise Ratio (SINR) at their receivers is not lower than the threshold, which is the spatial-reuse characteristic. STDMA is considered as one of the medium access schemes that can exploit spatial reuse to improve network throughput. Past studies have shown that optimizing the performance of STDMA is NP-Hard. Therefore, we propose a STDMA-based scheduling algorithm that operates in a greedy fashion for WMNs. We show that the proposed algorithm enhances not only the throughput but also the fairness by capturing the essence of spatial-reuse approach of STDMA and giving medium access opportunities to each network element based on its priority. We furthermore validate our algorithm through theoretical analysis and extensive simulations and the results show that our algorithm can outperform state-of-the-art alternatives.

  • Throughput Comparison of Hybrid Slotted CSMA/CA-TDMA and Slotted CSMA/CA in IEEE 802.15.3c WPAN

    Chang-Woo PYO  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:8
      Page(s):
    1531-1543

    In this study, we construct an analytical model to investigate the system throughput of 802.15.3c WPAN by examining hybrid slotted CSMA/CA-TDMA and slotted CSMA/CA multiple access methods. Our analysis clearly shows the differences between the system throughputs of both multiple access methods. The obtained results show that the hybrid slotted CSMA/CA-TDMA can achieve a considerably higher system throughput compared to the slotted CSMA/CA; the difference between the two access methods is especially pronounced as the increase in the number of devices contending for the network increase. The system throughput comparisons have established why the hybrid slotted CSMA/CA-TDMA is preferred over the slotted CSMA/CA for high-speed wireless communications of the 802.15.3c WPAN.

  • Numerical Throughput Analysis on Channel Interference in IEEE 802.15.3c WPAN Based on Hybrid Multiple Access of CSMA/CA-TDMA

    Chang-Woo PYO  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1502-1514

    This study focuses on system throughput by taking into account the channel interference in IEEE 802.15.3c WPAN, which is based on the hybrid multiple access of CSMA/CA and TDMA, namely CSMA/CA-TDMA. To study the system throughput, we construct a novel analytical model by taking into consideration the channel interference caused by the hidden networks in CSMA/CA-TDMA. The obtained results show that the system throughput achieved by TDMA is highly affected by frame transmission in CSMA/CA. Furthermore, we show that channel interference, which causes a degradation in the system throughput, is a very significant problem in the IEEE 802.15.3c WPAN.

  • Cross-Layer Protocol Combining Tree Routing and TDMA Slotting in Wireless Sensor Networks

    Ronggang BAI  Yusheng JI  Zhiting LIN  Qinghua WANG  Xiaofang ZHOU  Yugui QU  Baohua ZHAO  

     
    PAPER-Network Architecture and Testbed

      Vol:
    E92-D No:10
      Page(s):
    1905-1914

    Being different from other networks, the load and direction of data traffic for wireless sensor networks are rather predictable. The relationships between nodes are cooperative rather than competitive. These features allow the design approach of a protocol stack to be able to use the cross-layer interactive way instead of a hierarchical structure. The proposed cross-layer protocol CLWSN optimizes the channel allocation in the MAC layer using the information from the routing tables, reduces the conflicting set, and improves the throughput. Simulations revealed that it outperforms SMAC and MINA in terms of delay and energy consumption.

1-20hit(91hit)