The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

7901-7920hit(21534hit)

  • A Novel Group Location Management Scheme Based on Route Information of Public Transportation System

    Yun Won CHUNG  

     
    PAPER-Network Management/Operation

      Vol:
    E94-B No:2
      Page(s):
    477-483

    In group location management, when a transportation system (TS) with mobile stations (MSs) changes location area (LA), only a single group location update by the TS is needed, instead of multiple individual location updates by MSs riding on the TS. Therefore, group location management significantly reduces location update signaling of the current individual location management. In this paper, we further improve the conventional group location management, by paging cells containing the route of public TS within an LA only, if an incoming call arrives at an MS riding on the TS, based on the observation that public TS, such as bus, subway, and train, follows a fixed route; its movement is not random. The performance of the proposed scheme is analyzed in terms of total signaling cost based on the modeling of public TS route. Numerical results reveal that the proposed scheme significantly outperforms the conventional scheme from the aspect of total signaling cost, at the expense of small network overhead due to the additional queries needed to acquire public TS route information.

  • A 1 Gb/s 3.8 pJ/bit Differential Input BPSK Detection Scheme for UWB-IR Communication Using 180 nm CMOS Technology

    Mohiuddin HAFIZ  Nobuo SASAKI  Takamaro KIKKAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:2
      Page(s):
    240-247

    A CMOS detection procedure for ultra-wideband impulse radio (UWB-IR) communication system, employing Bi-Phase Shift Keying (BPSK) modulation scheme, is presented here. The chip was designed and fabricated in a 180 nm CMOS process and it requires a supply voltage of 1.8 V, with a die area of 0.01 mm2. A train of Gaussian Monocycle Pulses (GMP), modulated by a random data sequence of 1 Gb/s, has been detected successfully by the detector. Ability to process differential data without using conventional blocks like mixer, correlator etc. while consuming a very low power (3.8 pJ/bit for a data rate of 1 Gb/s) is the novelty of this work. The detection scheme employing a simple architecture with a noncoherent detection mechanism is well suited for UWB-IR communication system.

  • Simple Local Multicast Tree Extension against Intermittently Disconnected State by Exploiting Motion Affinity

    Kwang Bin IM  Kyungran KANG  Young-Jong CHO  

     
    LETTER-Network

      Vol:
    E94-B No:2
      Page(s):
    565-568

    This letter proposes a simple k-hop flooding scheme for the temporarily lost child node of a multicast tree in a mobile ad hoc network where a group of nodes move together within a bound. Through simulation, we show that our scheme improves the packet delivery ratio of MAODV to be comparable to the epidemic routing with only small additional duplicate packets.

  • Convergence Property of IDR(s) Method Implemented along with Method of Moments for Solving Large-Scale Electromagnetic Scattering Problems Involving Conducting Objects

    Hidetoshi CHIBA  Toru FUKASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:2
      Page(s):
    198-205

    In this paper, the performance of the induced dimension reduction (IDR) method implemented along with the method of moments (MoM) is described. The MoM is based on a combined field integral equation for solving large-scale electromagnetic scattering problems involving conducting objects. The IDR method is one of Krylov subspace methods. This method was initially developed by Peter Sonneveld in 1979; it was subsequently generalized to the IDR(s) method. The method has recently attracted considerable attention in the field of computational physics. However, the performance of the IDR(s) has hardly been studied or practiced for electromagnetic wave problems. In this study, the performance of the IDR(s) is investigated and clarified by comparing the convergence property and memory requirement of the IDR(s) with those of other representative Krylov solvers such as biconjugate gradient (BiCG) methods and generalized minimal residual algorithm (GMRES). Numerical experiments reveal that the characteristics of the IDR(s) against the parameter s strongly depend on the geometry of the problem; in a problem with a complex geometry, s should be set to an adequately small value in order to avoid the "spurious convergence" which is a problem that the IDR(s) inherently holds. As for the convergence behavior, we observe that the IDR(s) has a better convergence ability than GPBiCG and GMRES(m) in a variety of problems with different complexities. Furthermore, we also confirm the IDR(s)'s inherent advantage in terms of the memory requirements over GMRES(m).

  • Probing of Maxwell-Wagner Type Interfacial Charging Process in Double-Layer Devices by Time-Resolved Second Harmonic Generation

    Le ZHANG  Dai TAGUCHI  Jun LI  Takaaki MANAKA  Mitsumasa IWAMOTO  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    141-145

    The Maxwell-Wagner type interfacial charging processes were characterized by time-resolved second harmonic generation method (TR-SHG) using three typical organic double-layer devices, i.e., IZO/α-NPD/Alq3/Al for OLED and ITO/PI/α-NPD (or pentacene)/Au for MIM elements. Devices with a PI blocking layer represent one-carrier transport case, while the OLED is a typical two-carrier transport device. It is found that three devices show similar behavior of charging of the electrodes, however, interfacial charging behavior was different from case to case. On the basis of Maxwell-Wagner model, the different transients were analyzed with consideration of carrier species responsible for the interfacial charging. The observed TR-SHG well support the results of I-V measurements.

  • Design of a Broadband Cruciform Substrate Integrated Waveguide Coupler

    Mitsuyoshi KISHIHARA  Isao OHTA  Kensuke OKUBO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:2
      Page(s):
    248-250

    A broadband cruciform substrate integrated waveguide coupler is designed based on the planar circuit approach. The broadband property is obtained by widening the crossed region in the same way as rectangular waveguide cruciform couplers. As a result, a 3 dB coupler with fractional bandwidth of 30% is realized at 24 GHz.

  • Experimental Compensation for FWM Induced Crosstalk with Digital Coherent Detection

    Jing LIANG  Katsushi IWASHITA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E94-B No:2
      Page(s):
    558-561

    Four-wave mixing (FWM) compensation using digital coherent detection is experimentally demonstrated. Two lights and the induced FWM components are combined with phase-locked local oscillator lights and received individually. The received signals are combined electrically and the signal-to-FWM crosstalk ratio is improved to more than 30 dB by backward propagation.

  • Analysis of Recurrence Relations Generalized from the 4-Peg Tower of Hanoi

    Akihiro MATSUURA  

     
    PAPER

      Vol:
    E94-D No:2
      Page(s):
    220-225

    In this paper, we analyze recurrence relations generalized from the Tower of Hanoi problem of the form T(n,α,β) = min 1 ≤ t ≤ n {αT(n-t,α,β) + βS(t,3)} , where S(t,3) = 2t - 1 is the optimal total number of moves for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers, the sequence of differences of T(n,α,β)'s, i.e., {T(n,α,β) - T(n-1,α,β)}, consists of numbers of the form β 2i αj (i, j ≥ 0) lined in the increasing order.

  • A Hierarchical Geographical Routing with Alternative Paths Using Autonomous Clustering for Mobile Ad Hoc Networks

    Hiroshi NAKAGAWA  Satoshi TESHIMA  Tomoyuki OHTA  Yoshiaki KAKUDA  

     
    PAPER-Assurance

      Vol:
    E94-B No:1
      Page(s):
    37-44

    Recently in ad hoc networks, routing schemes using location information which is provided by GPS (Global Position System) have been proposed. However, many routing schemes using location information assume that a source node has already known the location information of the destination node and they do not adapt to large ad hoc networks. On another front, the autonomous clustering scheme has been proposed to construct the hierarchical structure in ad hoc networks and adapt to large ad hoc networks. However, even when the hierarchical structure is introduced, there is some problem. The data delivery ratio becomes lower as the node speed becomes higher, and clusterheads have much overhead in the hierarchical routing scheme based on the autonomous clustering scheme. In order to cope with these problems, this paper proposes a new Hierarchical Geographical Routing with Alternative Paths (Hi-GRAP) using the autonomous clustering scheme and shows the effectiveness of the proposed hierarchical geographical routing in comparison with GPSR, Hi-AODV and AODV through simulation experiments with respect to the amount of control packets and the data delivery ratio.

  • Optimization of Two-Dimensional Filter in Time-to-Space Converted Correlator for Optical BPSK Label Recognition Using Genetic Algorithms

    Naohide KAMITANI  Hiroki KISHIKAWA  Nobuo GOTO  Shin-ichiro YANAGIYA  

     
    PAPER-Information Processing

      Vol:
    E94-C No:1
      Page(s):
    47-54

    A two-dimensional filter for photonic label recognition system using time-to-space conversion and delay compensation was designed using Genetic-Algorithms (GA). For four-bit Binary Phase Shift Keying (BPSK) labels at 160 Gbit/s, contrast ratio of the output for eight different labels was improved by optimization of two-dimentional filtering. The contrast ratio of auto-correlation to cross-correlation larger than 2.16 was obtained by computer simulation. This value is 22% larger than the value of 1.77 with the previously reported system using matched filters.

  • Anomaly Detection in Electronic Shelf Label Systems

    Yulia PONOMARCHUK  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E94-B No:1
      Page(s):
    315-318

    This paper proposes a lightweight, fast and efficient method for the detection of jamming attacks, interference, and other anomalies in electronic shelf label (ESL) systems and wireless sensor networks (WSNs) with periodic data transmission. The proposed method is based on the thresholding technique, which is applied to selected parameters of traffic and allows discrimination of random failures from anomalies and intrusions. It does not require the installation of additional hardware and does not create extra communication costs; its computational requirements are negligible, since it is based on statistical methods. Herein recommendations are provided for choosing a thresholds type. Extensive simulations, made by Castalia simulator for WSNs, show that the proposed method has superior accuracy compared to existing algorithms.

  • On the Performance of the Two-Cell Cooperative Single User (CSU) MIMO System with Hybrid Feedback

    Janghoon YANG  Seunghun JANG  Dong Ku KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    338-341

    Achievable rates of two different transmission schemes of the two-cell cooperative single user (CSU) multi-input multi-output (MIMO) system with hybrid feedback is studied, in which one cell has the channel state information (CSI) from a mobile station (MS) and the other has channel covariance information (CCI) from it. Disjoint encoding over two base stations (BSs) is shown to achieve the capacity of the CSU-MIMO with hybrid feedback. Rather than finding an optimal transmission scheme, a suboptimal one is proposed such that the transmit directions of the BSs with CSI and CCI are eigen directions of the instantaneous channel correlation matrix and transmit covariance matrix respectively. The optimum power allocation for these transmit directions is derived as an iterative power allocation (IPA) similar to that of the MIMO multiple access channel (MAC) with CCI only. We also propose a simple disjoint power allocation (DPA). The simulation results show that the proposed transmit directions and IPA for the CSU-MIMO with hybrid feedback outperforms the MIMO-MAC with CCI only, while the DPA achieves almost the same performance as the IPA, only when the SNR is low.

  • Spatially Adaptive Noise Removal Algorithm Using Local Statistics

    Tuan-Anh NGUYEN  Won-Seon SONG  Min-Cheol HONG  

     
    LETTER-Image

      Vol:
    E94-A No:1
      Page(s):
    452-456

    In this letter, we propose a spatially adaptive noise removal algorithm using local statistics. The proposed algorithm consists of two stages: noise detection and removal. In order to solve the trade-off between the effective noise suppression and the over-smoothness of the reconstructed image, local statistics such as local maximum and the local weighted activity is defined. With the local statistics, the noise detection function is defined and a modified Gaussian filter is used to suppress the detected noise components. The experimental results demonstrate the effectiveness of the proposed algorithm.

  • How to Maximize the Potential of FPGA-Based DSPs for Modular Exponentiation

    Daisuke SUZUKI  Tsutomu MATSUMOTO  

     
    PAPER-Implementation

      Vol:
    E94-A No:1
      Page(s):
    211-222

    This paper describes a modular exponentiation processing method and circuit architecture that can exhibit the maximum performance of FPGA resources. The modular exponentiation architecture proposed by us comprises three main techniques. The first one is to improve the Montgomery multiplication algorithm in order to maximize the performance of the multiplication unit in an FPGA. The second one is to balance and improve the circuit delay. The third one is to ensure scalability of the circuit. Our architecture can perform fast operations using small-scale resources; in particular, it can complete a 512-bit modular exponentiation as fast as in 0.26 ms with the smallest Virtex-4 FPGA, XC4VF12-10SF363. In fact the number of SLICEs used is approx. 4200, which proves the compactness of our design. Moreover, the scalability of our design also allows 1024-, 1536-, and 2048-bit modular exponentiations to be processed in the same circuit.

  • BICM-ID with 3-Dimensional BPSK and Signal Space Diversity over Rayleigh Channel

    Qiuliang XIE  Kewu PENG  Fang YANG  Zhaocheng WANG  Zhixing YANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:1
      Page(s):
    282-284

    A BICM-ID system with 3-dimensional rotated BPSK constellation and signal space diversity (SSD) is proposed to combat the effect of Rayleigh fading. A new criterion based on mutual information is proposed to find the optimal rotation matrix, and the labeling that fits well with the outer code is presented. Simulation results show that at BER of 10-5 over a Rayleigh fading channel, with the code length of 192,000 bits and the iteration number of 100, the performance of the proposed system is only about 0.8 dB from the Gaussian-input Shannon limit and exceeds the limit constrained by the traditional QPSK input without rotation or SSD, at the spectrum efficiency of 1 bit/s/Hz.

  • Novel 1T DRAM Cell for Low-Voltage Operation and Long Data Retention Time

    Woojun LEE  Kwangsoo KIM  Woo Young CHOI  

     
    PAPER-Integrated Electronics

      Vol:
    E94-C No:1
      Page(s):
    110-115

    A novel one-transistor dynamic random access memory (1T DRAM) cell has been proposed for a low-voltage operation and longer data retention time. The proposed 1T DRAM cell has three features compared with a conventional 1T DRAM cell: low body doping concentration, a recessed gate structure, and a P + poly-Si gate. Simulation results show that the proposed 1T DRAM cell has < 1-ns program time and > 100-ms data retention time under the condition of sub-1-V operating voltage.

  • O-means: An Optimized Clustering Method for Analyzing Spam Based Attacks

    Jungsuk SONG  Daisuke INOUE  Masashi ETO  Hyung Chan KIM  Koji NAKAO  

     
    PAPER-Network Security

      Vol:
    E94-A No:1
      Page(s):
    245-254

    In recent years, the number of spam emails has been dramatically increasing and spam is recognized as a serious internet threat. Most recent spam emails are being sent by bots which often operate with others in the form of a botnet, and skillful spammers try to conceal their activities from spam analyzers and spam detection technology. In addition, most spam messages contain URLs that lure spam receivers to malicious Web servers for the purpose of carrying out various cyber attacks such as malware infection, phishing attacks, etc. In order to cope with spam based attacks, there have been many efforts made towards the clustering of spam emails based on similarities between them. The spam clusters obtained from the clustering of spam emails can be used to identify the infrastructure of spam sending systems and malicious Web servers, and how they are grouped and correlate with each other, and to minimize the time needed for analyzing Web pages. Therefore, it is very important to improve the accuracy of the spam clustering as much as possible so as to analyze spam based attacks more accurately. In this paper, we present an optimized spam clustering method, called O-means, based on the K-means clustering method, which is one of the most widely used clustering methods. By examining three weeks of spam gathered in our SMTP server, we observed that the accuracy of the O-means clustering method is about 87% which is superior to the previous clustering methods. In addition, we define 12 statistical features to compare similarity between spam emails, and we determined a set of optimized features which makes the O-means clustering method more effective.

  • Exact Error Probability Analysis of Arbitrary 2-D Modulation-OFDM Systems with I/Q Imbalances

    Kyongkuk CHO  Jaeyoon LEE  Dongweon YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    350-354

    In OFDM systems, in-phase and quadrature (I/Q) imbalances generated in the analog front-end introduce inter-channel interference and, consequently, error performance degradation. This letter provides an exact expression involving the two-dimensional (2-D) Gaussian Q-function for the error probability of an arbitrary 2-D modulated OFDM signal with I/Q imbalances. The effects of I/Q imbalances on the distribution of an AWGN and the error performance are analyzed.

  • Generalized Classes of Weak Keys on RC4 Using Predictive State

    Ryoichi TERAMURA  Toshihiro OHIGASHI  Hidenori KUWAKADO  Masakatu MORII  

     
    PAPER-Symmetric Cryptography

      Vol:
    E94-A No:1
      Page(s):
    10-18

    Conventional class of weak keys on RC4 stream cipher is defined as a specific case that combinations of the first three bytes of secret key satisfy two relational equations. This paper expands and generalizes the classes of weak keys using generalized relational equations and special classes of the internal state (called predictive state). We derive the probability that generalized classes of weak keys leak the information of bytes of the secret key. Furthermore, we enumerate the generalized classes of weak keys and show that most of them leak more information of the secret key than Roos' one.

  • Cancelable Biometrics with Provable Security and Its Application to Fingerprint Verification

    Kenta TAKAHASHI  Shinji HIRATA  

     
    PAPER-Biometrics

      Vol:
    E94-A No:1
      Page(s):
    233-244

    Biometric authentication has attracted attention because of its high security and convenience. However, biometric feature such as fingerprint can not be revoked like passwords. Thus once the biometric data of a user stored in the system has been compromised, it can not be used for authentication securely for his/her whole life long. To address this issue, an authentication scheme called cancelable biometrics has been studied. However, there remains a major challenge to achieve both strong security and practical accuracy. In this paper, we propose a novel and fundamental algorithm for cancelable biometrics called correlation-invariant random filtering (CIRF) with provable security. Then we construct a method for generating cancelable fingerprint templates based on the chip matching algorithm and the CIRF. Experimental evaluation shows that our method has almost the same accuracy as the conventional fingerprint verification based on the chip matching algorithm.

7901-7920hit(21534hit)