The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

21521-21534hit(21534hit)

  • Vertical to Surface Transmission Electro-Photonic Device (VSTEP) and Its Application to Optical Interconnection and Information Processing

    Kenichi KASAHARA  Takahiro NUMAI  Hideo KOSAKA  Ichiro OGURA  Kaori KURIHARA  Mitsunori SUGIMOTO  

     
    PAPER

      Vol:
    E75-C No:1
      Page(s):
    70-80

    The VSTEP concept and its practical application in the form of an LED-type pnpn-VSTEP demonstrating low power consumption through electro-photonic operational modes are both shown. Further, with focus primarily on the new laser-mode VSTEP with high-intensity light output and narrow optical beam divergence, the design features such as threshold gain and optical absorptivity, device fabrication, and characteristics are explained. The possibility of ultimate performance based mainly on electrical to optical power conversion efficiency, important from the application viewpoint of optical interconnection, are also discussed. Also, as two examples of functional optical interconnection achieved by VSTEP, serial-to-parallel data conversion and optical self-routing switches are shown. Finally, future opto-electronic technologies to be developed for two-dimensionally integrable surface-type optical semiconductor devices, including the VSTEP, are discussed.

  • Future Trends in Telecommunication Education

    Subbarayan PASUPATHY  

     
    INVITED PAPER

      Vol:
    E75-B No:1
      Page(s):
    9-13

    This article briefly looks at the future of telecommunication education in the universities as it evolves from present concerns and trends. Five year bachelor's programs and top-down curricular design will be common. Textbooks supplemented by advance organizers, instruction and testing according to individual learning styles and global integration of education using multi-media services and broadband technology will be some of the other features. Finally, the importance of industry-university partnership in all aspects of engineering education is emphasized.

  • Surface Emitting Lasers and Parallel Operating Devices--Fundamentals and Prospects--

    Kenichi IGA  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    12-19

    In this paper we review the recent progress and basic technology of vertical cavity surface emitting lasers together with related parallel surface operating optical devices. First, the concept of surface emitting lasers is presented, and then currently developed device technologies will be reviewed. We will feature several technical issues, such as multi-layer structures, 2-dimensional arrays, photonic integration, etc. Lastly, future prospects for parallel lightwave systems will be discussed.

  • A Control Method for an Uninterruptible Power Supply with a Bidirectional Cycloconverter

    Tadahito AOKI  Katsuichi YOTSUMOTO  Seiichi MUROYAMA  

     
    PAPER-Power Supply

      Vol:
    E75-B No:1
      Page(s):
    34-41

    This paper describes a new configuration and control method for an uninterruptible power supply (UPS) with a bidirectional cycloconverter. When commercial AC power is operating normally, the load is supplied by commercial AC power and the bidirectional cycloconverter operates as a battery charger. During interruptions of commercial AC power, the bidirectional cycloconverter operates as an inverter and supplies AC power to the load. Unlike a conventional UPS, this new configuration does not require a battery charger, so it can be small, light-weight, cost-effective, and highly efficient. The output voltage characteristics and the transient voltage drop in the output when commercial AC power fails are also discussed by numerical analysis and experiments.

  • Connected Associative Memory Neural Network with Dynamical Threshold Function

    Xin-Min HUANG  Yasumitsu MIYAZAKI  

     
    PAPER-Bio-Cybernetics

      Vol:
    E75-D No:1
      Page(s):
    170-179

    This paper presents a new connected associative memory neural network. In this network, a threshold function which has two dynamical parameters is introduced. After analyzing the dynamical behaviors and giving an upper bound of the memory capacity of the conventional connected associative memory neural network, it is demonstrated that these parameters play an important role in the recalling processes of the connected neural network. An approximate method of evaluationg their optimum values is given. Further, the optimum feedback stopping time of this network is discussed. Therefore, in our network, the recalling processes are ended at the optimum feedback stopping time whether a state energy has been local minimum or not. The simulations on computer show that the dynamical behaviors of our network are greatly improved. Even though the number of learned patterns is so large as the number of neurons, the statistical properties of the dynamical behaviors of our network are that the output series of recalling processes approach to the expected patterns on their initial inputs.

  • Knowledge-Based Protocol Design for Computer Communication Systems

    Tetsuo KINOSHITA  Kenji SUGAWARA  Norio SHIRATORI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E75-D No:1
      Page(s):
    156-169

    This paper proposes a knowledge-based design method of a protocol of a communication network system based on the knowledge-based design methodology for computer communication systems. In the proposed method, two knowledge models, i.e., the communication network architecture model (CNAM) and the communication protocol architecture model (CPAM), are introduced and a protocol design task is modeled as a successive transformation process of these knowledge models. Giving CNAM which represents the users' requirements concerning a communication network system, the requirements specification of a protocol is derived from CNAM and represented as CPAM. Then, the detailed requirements specification of a protocol is also derived from CPAM and represented by the formal description technique (FDT-Expressions). The derivations of CPAM and FDT-Expressions are executed by the transformation rules which represent the mappings between knowledge models. Due to formally defined knowledge models and mappings, the proposed method provides a framework of a systematic support of knowledge-based protocol design. In this paper, the formal definitions of CNAM and CPAM are given, then the derivation process of FDT-Expressions of a protocol is also formalized based on these knowledge models. Furthermore, a design example is demonstrated by using LOTOS as one of the FDT-Expressions of a protocol.

  • Human Interfaces in Telecommunications and Computers

    Takaya ENDO  

     
    INVITED PAPER

      Vol:
    E75-B No:1
      Page(s):
    20-25

    This paper discusses new trends and directions in human interface (HI) technologies, and the effects of HI technologies on human life or on social activities. This paper postulates that the HI subsumes man-machine interface, human-computer interaction, human-human interaction, human-organizational interface, human-environmental interface, human-social interface, etc. A new communication model, called Human Interface Communication Model (HICOM), and a new human dialogue model, called Human Interface Dialogue model (HIDIM), are derived by reexamining trends and directions on HI technologies from the viewpoint of functional meanings of interfaces, and from the viewpoint of a socially distributed cognition mechanism.

  • Elliptic Curve Cryptosytems and Their Applications

    Kenji KOYAMA  Tatsuaki OKAMOTO  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    50-57

    We propose two types of public-key cryptographic schemes based on elliptic curves modulo n, where n is the product of secret large primes p and q. The RSA-type scheme has an encryption function with an odd multiplier. The Rabin-type scheme has an encryption function with a multiplier of 2. The security of the proposed schemes is based on the difficulty of factoring n. Other security characteristics are also discussed. We show some applications to a master key scheme and blind signature scheme.

  • Electromagnetic Interference and Countermeasures on Metallic Lines for ISDN

    Mitsuo HATTORI  Tsuyoshi IDEGUCHI  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E75-B No:1
      Page(s):
    50-56

    Electromagnetic interference on a bus wiring configuration of the ISDN basic interface using metallic telecommunication lines is studied. A simple circuit to simulate terminal equipment unbalance about earth is developed for measurement purposes, based on the fact that the unbalance weakens the withstanding capability against interference. The electromagnetic interferences from low-voltage supply lines, analog telephone lines and broadcasting waves are evaluated by experiments using the circuit. The interference is measured by both induced voltage on the interface line and the error rate of the transmission signal line. Consequently, it is clarified that the basic interface is disturbed by the induced voltage, because the terminal equipment in the CCITT Recommendation I.430 has too large an unbalance about earth to maintain transmission quality. Adding to this, countermeasures to reduce interference are proposed.

  • A New MOS Linear Operational Transconductance Amplifier and Its Application to OTA-C Filters

    Takahiro INOUE  Fumio UENO  Mikio KAWASAKI  Yoshinori ARAMAKI  Sonoe NODA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:1
      Page(s):
    81-89

    A new MOS linear operational transconductance amplifier (OTA) for the up-to-4 MHz range OTA-C filters is proposed. The proposed OTA is designed using a new linearizing technique based on bias-current modulation, to compensate nonlinearities in the transfer characteristic of the conventional current-source-biased source-coupled pair. The design and SPICE simulation are presented in detail, assuming the implementation by the typical p-well CMOS process. The simulation of a 3.58 MHz OTA-C band-pass filter built with the proposed OTAs showed close agreement with the desired performance.

  • Surface Emitting Lasers and Parallel Operating Devices--Fundamentals and Prospects--

    Kenichi IGA  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    10-17

    In this paper we review the recent progress and basic technology of vertical cavity surface emitting lasers together with related parallel surface operating optical devices. First, the concept of surface emitting lasers is presented, and then currently developed device technologies will be reviewed. We will feature several technical issues, such as multi-layer structures, 2-dimensional arrays, photonic integration, etc. Lastly, future prospects for parallel lightwave systems will be discussed.

  • A Characterization of PC=P

    Mitsunori OGIWARA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    44-49

    We study the computational power of PC=P. We give a characterization of the class via single Turing machines. Based on the characterization, we give combinatorial problems that are Pm-complete for the class.

  • Optical Information Processing Systems

    W. Thomas CATHEY  Satoshi ISHIHARA  Soo-Young LEE  Jacek CHROSTOWSKI  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    28-37

    We review the role of optics in interconnects, analog processing, neural networks, and digital computing. The properties of low interference, massively parallel interconnections, and very high data rates promise extremely high performance for optical information processing systems.

  • A Fast Viterbi Decoding in Optical Channels

    Hiroyuki YASHIMA  Jouji SUZUKI  Iwao SASASE  Shinsaku MORI  

     
    PAPER-Optical Communication

      Vol:
    E75-B No:1
      Page(s):
    26-33

    A fast Viterbi decoding technique with path reduction in optical channels is presented. This decoding exploits the asymmetric characteristic of optical channels. In the decoding trellis, the branches with low or no possibility being correct path are eliminated based on the detected signal level. The number of Add-Compare-Select (ACS) operations which occupy the dominant part of Viterbi decoding is considerably reduced due to branch eliminations, and fast decoding is realized by decoding asynchronously to received sequence. The reduction of the number of ACS operations is derived for the codes with rate 1/2. It is shown that the number of ACS operations is considerably reduced compared with the conventional Viterbi decoding. The bit error probability of the proposed decoding is derived for noiseless photon counting channel. It is also shown that the decoding technique can be applied to the cases using avalanche photo diode (APD) based receiver with dark current noise at a cost of negligible degradation on the bit error probability.

21521-21534hit(21534hit)