The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1-20hit(21534hit)

  • IAD-Net: Single-Image Dehazing Network Based on Image Attention Open Access

    Zheqing ZHANG  Hao ZHOU  Chuan LI  Weiwei JIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2024/06/20
      Vol:
    E107-D No:10
      Page(s):
    1380-1384

    Single-image dehazing is a challenging task in computer vision research. Aiming at the limitations of traditional convolutional neural network representation capabilities and the high computational overhead of the self-attention mechanism in recent years, we proposed image attention and designed a single image dehazing network based on the image attention: IAD-Net. The proposed image attention is a plug-and-play module with the ability of global modeling. IAD-Net is a parallel network structure that combines the global modeling ability of image attention and the local modeling ability of convolution, so that the network can learn global and local features. The proposed network model has excellent feature learning ability and feature expression ability, has low computational overhead, and also improves the detail information of hazy images. Experiments verify the effectiveness of the image attention module and the competitiveness of IAD-Net with state-of-the-art methods.

  • TDEM: Table Data Extraction Model Based on Cell Segmentation Open Access

    Zhe WANG  Zhe-Ming LU  Hao LUO  Yang-Ming ZHENG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/30
      Vol:
    E107-D No:10
      Page(s):
    1376-1379

    To accurately extract tabular data, we propose a novel cell-based tabular data extraction model (TDEM). The key of TDEM is to utilize grayscale projection of row separation lines, coupled with table masks and column masks generated by the VGG-19 neural network, to segment each individual cell from the input image of the table. In this way, the text content of the table is extracted from a specific single cell, which greatly improves the accuracy of table recognition.

  • Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity Open Access

    Weizhi WANG  Lei XIA  Zhuo ZHANG  Xiankai MENG  

     
    LETTER-Software Engineering

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1362-1366

    Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code.

  • Integrating Event Elements for Chinese-Vietnamese Cross-Lingual Event Retrieval Open Access

    Yuxin HUANG  Yuanlin YANG  Enchang ZHU  Yin LIANG  Yantuan XIAN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2024/06/04
      Vol:
    E107-D No:10
      Page(s):
    1353-1361

    Chinese-Vietnamese cross-lingual event retrieval aims to retrieve the Vietnamese sentence describing the same event as a given Chinese query sentence from a set of Vietnamese sentences. Existing mainstream cross-lingual event retrieval methods rely on extracting textual representations from query texts and calculating their similarity with textual representations in other language candidate sets. However, these methods ignore the difference in event elements present during Chinese-Vietnamese cross-language retrieval. Consequently, sentences with similar meanings but different event elements may be incorrectly considered to describe the same event. To address this problem, we propose a cross-lingual retrieval method that integrates event elements. We introduce event elements as an additional supervisory signal, where we calculate the semantic similarity of event elements in two sentences using an attention mechanism to determine the attention score of the event elements. This allows us to establish a one-to-one correspondence between event elements in the text. Additionally, we leverage the multilingual pre-trained language model fine-tuned based on contrastive learning to obtain cross-language sentence representation to calculate the semantic similarity of the sentence texts. By combining these two approaches, we obtain the final text similarity score. Experimental results demonstrate that our proposed method achieves higher retrieval accuracy than the baseline model.

  • Reliable Image Matching Using Optimal Combination of Color and Intensity Information Based on Relationship with Surrounding Objects Open Access

    Rina TAGAMI  Hiroki KOBAYASHI  Shuichi AKIZUKI  Manabu HASHIMOTO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2024/05/30
      Vol:
    E107-D No:10
      Page(s):
    1312-1321

    Due to the revitalization of the semiconductor industry and efforts to reduce labor and unmanned operations in the retail and food manufacturing industries, objects to be recognized at production sites are increasingly diversified in color and design. Depending on the target objects, it may be more reliable to process only color information, while intensity information may be better, or a combination of color and intensity information may be better. However, there are not many conventional method for optimizing the color and intensity information to be used, and deep learning is too costly for production sites. In this paper, we optimize the combination of the color and intensity information of a small number of pixels used for matching in the framework of template matching, on the basis of the mutual relationship between the target object and surrounding objects. We propose a fast and reliable matching method using these few pixels. Pixels with a low pixel pattern frequency are selected from color and grayscale images of the target object, and pixels that are highly discriminative from surrounding objects are carefully selected from these pixels. The use of color and intensity information makes the method highly versatile for object design. The use of a small number of pixels that are not shared by the target and surrounding objects provides high robustness to the surrounding objects and enables fast matching. Experiments using real images have confirmed that when 14 pixels are used for matching, the processing time is 6.3 msec and the recognition success rate is 99.7%. The proposed method also showed better positional accuracy than the comparison method, and the optimized pixels had a higher recognition success rate than the non-optimized pixels.

  • Evaluating Introduction of Systems by Goal Dependency Modeling Open Access

    Haruhiko KAIYA  Shinpei OGATA  Shinpei HAYASHI  

     
    PAPER-Software Engineering

      Pubricized:
    2024/06/11
      Vol:
    E107-D No:10
      Page(s):
    1297-1311

    Before introducing systems to an activity in a business or in daily life, the effects of these systems should first be carefully examined by analysts. Thus, methods for examining such effects are required at the early stage of requirements analysis. In this study, we propose and evaluate an analysis method using a modeling notation for this purpose, called goal dependency modeling and analysis (GDMA). In an activity, an actor, such as a person or a system, expects a goal to be achieved. The actor or another actor will achieve this goal. We focus herein on such a goal and the two different roles played by the actors. In GDMA, the dependencies in the roles of the two actors about a goal are mainly represented. GDMA enables analysts to observe the change of actors, their expectations, and abilities by using metrics. Each metric is defined on the basis of the GDMA meta-model. Therefore, GDMA enables them to decide whether the change is good or bad both quantitatively and qualitatively for the people. We evaluate GDMA by describing models of the actual system introduction written in the literatures and explain the effects caused by this introduction. In addition, CASE tools are crucial in efficiently and accurately performing GDMA. Hence, we develop its tools by extending an existing UML modeling tool.

  • A Two-Phase Algorithm for Reliable and Energy-Efficient Heterogeneous Embedded Systems Open Access

    Hongzhi XU  Binlian ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1285-1296

    Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.

  • REM-CiM: Attentional RGB-Event Fusion Multi-Modal Analog CiM for Area/Energy-Efficient Edge Object Detection during Both Day and Night Open Access

    Yuya ICHIKAWA  Ayumu YAMADA  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    426-435

    Integrating RGB and event sensors improves object detection accuracy, especially during the night, due to the high-dynamic range of event camera. However, introducing an event sensor leads to an increase in computational resources, which makes the implementation of RGB-event fusion multi-modal AI to CiM difficult. To tackle this issue, this paper proposes RGB-Event fusion Multi-modal analog Computation-in-Memory (CiM), called REM-CiM, for multi-modal edge object detection AI. In REM-CiM, two proposals about multi-modal AI algorithms and circuit implementation are co-designed. First, Memory capacity-Efficient Attentional Feature Pyramid Network (MEA-FPN), the model architecture for RGB-event fusion analog CiM, is proposed for parameter-efficient RGB-event fusion. Convolution-less bi-directional calibration (C-BDC) in MEA-FPN extracts important features of each modality with attention modules, while reducing the number of weight parameters by removing large convolutional operations from conventional BDC. Proposed MEA-FPN w/ C-BDC achieves a 76% reduction of parameters while maintaining mean Average Precision (mAP) degradation to < 2.3% during both day and night, compared with Attentional FPN fusion (A-FPN), a conventional BDC-adopted FPN fusion. Second, the low-bit quantization with clipping (LQC) is proposed to reduce area/energy. Proposed REM-CiM with MEA-FPN and LQC achieves almost the same memory cells, 21% less ADC area, 24% less ADC energy and 0.17% higher mAP than conventional FPN fusion CiM without LQC.

  • Millimeter-Wave Transceiver Utilizing On-Chip Butler Matrix for Simultaneous 5G Relay Communication and Wireless Power Transfer Open Access

    Keito YUASA  Michihiro IDE  Sena KATO  Kenichi OKADA  Atsushi SHIRANE  

     
    PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-C No:10
      Page(s):
    408-415

    This paper introduces a wireless-powered relay transceiver designed to extend 5G millimeter-wave coverage. It employs an on-chip butler matrix, enabling beam control-free operation. The prototype includes PCB array antennas and on-chip butler matrix and rectifiers manufactured using a Si CMOS 65 nm process. The relay transceiver performs effectively in beam angles from -45° to 45°. In the 24 GHz wireless power transmission (WPT) mode, it generates 0.12 mW with 0 dBm total input power, boasting an RF-DC conversion efficiency of 12.2%. It also demonstrates communication performance at 28 GHz in both RX and TX modes with a 100 MHz bandwidth and 64QAM modulation.

  • Sub-60-mV Charge Pump and its Driver Circuit for Extremely Low-Voltage Thermoelectric Energy Harvesting Open Access

    Hikaru SEBE  Daisuke KANEMOTO  Tetsuya HIROSE  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    400-407

    Extremely low-voltage charge pump (ELV-CP) and its dedicated multi-stage driver (MS-DRV) for sub-60-mV thermoelectric energy harvesting are proposed. The proposed MS-DRV utilizes the output voltages of each ELV-CP to efficiently boost the control clock signals. The boosted clock signals are used as switching signals for each ELV-CP and MS-DRV to turn switch transistors on and off. Moreover, reset transistors are added to the MS-DRV to ensure an adequate non-overlapping period between switching signals. Measurement results demonstrated that the proposed MS-DRV can generate boosted clock signals of 350 mV from input voltage of 60 mV. The ELV-CP can boost the input voltage of 100 mV with 10.7% peak efficiency. The proposed ELV-CP and MS-DRV can boost the low input voltage of 56 mV.

  • Programmable Differential Bandgap Reference Circuit for Ultra-Low-Power CMOS LSIs Open Access

    Yoshinori ITOTAGAWA  Koma ATSUMI  Hikaru SEBE  Daisuke KANEMOTO  Tetsuya HIROSE  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    392-399

    This paper describes a programmable differential bandgap reference (PD-BGR) for ultra-low-power IoT (Internet-of-Things) edge node devices. The PD-BGR consists of a current generator (CG) and differential voltage generator (DVG). The CG is based on a bandgap reference (BGR) and generates an operating current and a voltage, while the DVG generates another voltage from the current. A differential voltage reference can be obtained by taking the voltage difference from the voltages. The PD-BGR can produce a programmable differential output voltage by changing the multipliers of MOSFETs in a differential pair and resistance with digital codes. Simulation results showed that the proposed PD-BGR can generate 25- to 200-mV reference voltages with a 25-mV step within a ±0.7% temperature inaccuracy in a temperature range from -20 to 100°C. A Monte Carlo simulation showed that the coefficient of the variation in the reference was within 1.1%. Measurement results demonstrated that our prototype chips can generate stable programmable differential output voltages, almost the same results as those of the simulation. The average power consumption was only 88.4 nW, with a voltage error of -4/+3 mV with 5 samples.

  • Chaos and Synchronization - Potential Ingredients of Innovation in Analog Circuit Design? Open Access

    Ludovico MINATI  

     
    INVITED PAPER

      Pubricized:
    2024/03/11
      Vol:
    E107-C No:10
      Page(s):
    376-391

    Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.

  • Advancements in Terahertz Communication: Harnessing the 300 GHz Band for High-Efficiency, High-Capacity Wireless Networks Open Access

    Minoru FUJISHIMA  

     
    INVITED PAPER

      Pubricized:
    2024/03/08
      Vol:
    E107-C No:10
      Page(s):
    366-375

    In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.

  • Hybrid Precoding for mmWave Massive Beamspace MIMO System with Limited Resolution Overlapped Phase Shifters Network Open Access

    Ting DING  Jiandong ZHU  Jing YANG  Xingmeng JIANG  Chengcheng LIU  

     
    PAPER

      Pubricized:
    2024/03/25
      Vol:
    E107-C No:10
      Page(s):
    355-363

    Considering the non-convexity of hybrid precoding and the hardware constraints of practical systems, a hybrid precoding architecture, which combines limited-resolution overlapped phase shifter networks with lens array, is investigated. The analogy part is a beam selection network composed of overlapped low-resolution phase shifter networks. In particular, in the proposed hybrid precoding algorithm, the analog precoding improves array gain by utilizing the quantization beam alignment method, whereas the digital precoding schemes multiplexing gain by adopting a Wiener Filter precoding scheme with a minimum mean square error criterion. Finally, in the sparse scattering millimeter-wave channel for the uniform linear array, the proposed method is compared with the existing scheme by computer simulation by using the ideal channel state information and the non-ideal channel state information. It is concluded that the proposed scheme performs better in low signal-to-noise regions and can achieve a good compromise between system performance and hardware complexity.

  • Double Step Technique for Accurate Microwave High Attenuation Measurements Open Access

    Anton WIDARTA  

     
    PAPER

      Pubricized:
    2024/06/11
      Vol:
    E107-C No:10
      Page(s):
    349-354

    A double step attenuation measurement technique using a non-isolating gauge block attenuator (GBA) has been proposed for accurate measurements of radio frequency and microwave high attenuation. For fixed attenuator as a device under test (DUT), a medium value (≤ 60 dB) attenuator is used as the GBA which connected directly between the test ports, then high attenuation of the DUT is measured in two setups as follows. 1) Thru and GBA with normal power level and 2) GBA and DUT with higher power level. This approach removes the need to isolate the GBA, therefore, accurate measurements of high attenuation can be obtained simply over a broad frequency range. For variable or step attenuator as a DUT, one of the attenuation sections of the DUT is applied as the GBA. Detailed analyses and those verification measurements are carried out both for fixed attenuator, as well as for variable attenuator and show good agreement.

  • Uniform Microwave Heating via Electromagnetic Coupling Using Zeroth-Order Resonators Open Access

    Baku TAKAHARA  Tomohiko MITANI  Naoki SHINOHARA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    340-348

    We propose microwave heating via electromagnetic coupling using zeroth-order resonators (ZORs) to extend the uniform heating area. ZORs can generate resonant modes with a wavenumber of 0, which corresponds to an infinite guide wavelength. Under this condition, uniform heating is expected because the resulting standing waves would not have nodes or antinodes. In the design proposed in this paper, two ZORs fabricated on dielectric substrates are arranged to face each other for electromagnetic coupling, and a sample placed between the resonators is heated. A single ZOR was investigated using a 3D electromagnetic simulator, and the resonant frequency and electric field distribution of the simulated ZOR were confirmed to be in good agreement with those of the fabricated ZOR. Simulations of two ZORs facing each other were then conducted to evaluate the performance of the proposed system as a heating apparatus. It was found that a resonator spacing of 25 mm was suitable for uniform heating. Heating simulations of SiC and Al2O3 sheets were performed with the obtained structure. The heating uniformity was evaluated by the width L50% over which the power loss distribution exceeds half the maximum value. This evaluation index was equal to 0.397λ0 for SiC and 0.409λ0 for Al2O3, both of which exceed λ0/4, the distance between a neighboring node and antinode of a standing wave, where λ0 is the free-space wavelength. Therefore, the proposed heating apparatus is effective for uniform microwave heating. Because of the different electrical parameters of the heated materials, SiC can be easily heated, whereas Al2O3 heats little. Finally, heating experiments were performed on each of these materials. Good uniformity in temperature was obtained for both SiC and Al2O3 sheets.

  • Efficiency Enhancement of a Single-Diode Rectenna Using Harmonic Control of the Antenna Impedance Open Access

    Katsumi KAWAI  Naoki SHINOHARA  Tomohiko MITANI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    323-331

    This study introduces a novel single-diode rectenna, enhancing the rf-dc conversion efficiency using harmonic control of the antenna impedance. We employ source-pull simulations encompassing the fundamental frequency and the harmonics to achieve a highly efficient rectenna. The results of the source-pull simulations delineate the source-impedance ranges required for enhanced efficiency at each harmonic. Based on the source-pull simulation results, we designed two inverted-F antenna with input impedances within and without these identified source impedance ranges. Experimental results show that the proposed rectenna has a maximum rf-dc conversion efficiency of 75.9% at the fundamental frequency of 920 MHz, an input power of 10.8 dBm, and a load resistance of 1 kΩ, which is higher than that of the comparative rectenna without harmonic control of the antenna impedance. This study demonstrates that the proposed rectenna achieves high efficiency through the direct connection of the antenna and the single diode, along with harmonic control of the antenna impedance.

  • Load-Independent Class-E Design with Load Adjustment Circuit Inverter Considering External Quality Factor Open Access

    Akihiko ISHIWATA  Yasumasa NAKA  Masaya TAMURA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    315-322

    The load-independent zero-voltage switching class-E inverter has garnered considerable interest as an essential component in wireless power transfer systems. This inverter achieves high efficiency across a broad spectrum of load conditions by incorporating a load adjustment circuit (LAC) subsequent to the resonant filter. Nevertheless, the presence of the LAC influences the output impedance of the inverter, thereby inducing a divergence between the targeted and observed output power, even in ideal lossless simulations. Consequently, iterative adjustments to component values are required via an LC element implementation. We introduce a novel design methodology that incorporates an external quality factor on the side of the resonant filter, inclusive of the LAC. Thus, the optimized circuit achieves the intended output power without necessitating alterations in component values.

  • Japanese Institutionalization and Global Standardization of Wireless Power Transmission, and Recently R&D Trend in Japan Open Access

    Takuya FUJIMOTO  

     
    INVITED PAPER

      Pubricized:
    2024/04/23
      Vol:
    E107-C No:10
      Page(s):
    299-306

    In Japan, research on spatial transmission Wireless Power Transfer/Transmission (WPT) for long-distance power transmission has been conducted ahead of the rest of the world; however, until 2022, there has been no category under the Radio Law, and it has been treated as an experimental station. The authors are working on Japanese institutionalization (revision of ministerial ordinances) and global standardization of this spatial transmission WPT for social implementation. This paper describes the Japanese and international institutionalization and standardization trends. In addition, as the latest trend in R&D trends, as the next step of institutionalization, the author introduces two national projects that are being worked on by industry, academia, and government for Step 2, which can be used for a wider range of applications by relaxing the scope of use and restrictions from Step 1, which has various restrictions. The first is about the Cross-ministerial Strategic Innovation Promotion Program (SIP) Phase 2. In SIP Phase 2, we conducted R&D on “WPT system for sensor networks and mobile devices”. This R&D is research on detecting and avoiding people so that radio exposure does not exceed protection guidelines and detecting incumbent radios and avoiding harmful interference so that more power can be transmitted under coexistence conditions. The other is “Research and Development for Expansion of Radio Resources” to be conducted by the Ministry of Internal Affairs and Communications (MIC), which is scheduled for four years from FY2022. This is also a more concrete research and development project for Step 2 institutionalization, along with the results of the SIP mentioned above.

  • GaN Solid State Power Amplifiers for Microwave Power Transfer and Microwave Heating Open Access

    Koji YAMANAKA  Kazuhiro IYOMASA  Takumi SUGITANI  Eigo KUWATA  Shintaro SHINJO  

     
    INVITED PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    292-298

    GaN solid state power amplifiers (SSPA) for wireless power transfer and microwave heating have been reviewed. For wireless power transfer, 9 W output power with 79% power added efficiency at 5.8 GHz has been achieved. For microwave heating, 450 W output power with 70% drain efficiency at 2.45 GHz has been achieved. Microwave power concentration and uniform microwave heating by phase control of multiple SSPAs are demonstrated.

1-20hit(21534hit)