The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

161-180hit(21534hit)

  • A Mueller-Müller CDR with False-Lock-Aware Locking Scheme for a 56-Gb/s ADC-Based PAM4 Transceiver Open Access

    Fumihiko TACHIBANA  Huy CU NGO  Go URAKAWA  Takashi TOI  Mitsuyuki ASHIDA  Yuta TSUBOUCHI  Mai NOZAWA  Junji WADATSUMI  Hiroyuki KOBAYASHI  Jun DEGUCHI  

     
    PAPER

      Pubricized:
    2023/11/02
      Vol:
    E107-A No:5
      Page(s):
    709-718

    Although baud-rate clock and data recovery (CDR) such as Mueller-Müller (MM) CDR is adopted to ADC-based receivers (RXs), it suffers from false-lock points when the RXs handle PAM4 data pattern because of the absence of edge data. In this paper, a false-lock-aware locking scheme is proposed to address this issue. After the false-lock-aware locking scheme, a clock phase is adjusted to achieve maximum eye height by using a post-1-tap parameter for an FFE in the CDR loop. The proposed techniques are implemented in a 56-Gb/s PAM4 transceiver. A PLL uses an area-efficient “glasses-shaped” inductor. The RX comprises an AFE, a 28-GS/s 7-bit time-interleaved SAR ADC, and a DSP with a 31-tap FFE and a 1-tap DFE. A TX is based on a 7-bit DAC with a 4-tap FFE. The transceiver is fabricated in 16-nm CMOS FinFET technology, and achieves a BER of less than 1e-7 with a 30-dB loss channel. The measurement results show that the MM CDR escapes from false-lock points, and converges to near the optimum point for large eye height.

  • Implementing Optical Analog Computing and Electrooptic Hopfield Network by Silicon Photonic Circuits Open Access

    Guangwei CONG  Noritsugu YAMAMOTO  Takashi INOUE  Yuriko MAEGAMI  Morifumi OHNO  Shota KITA  Rai KOU  Shu NAMIKI  Koji YAMADA  

     
    INVITED PAPER

      Pubricized:
    2024/01/05
      Vol:
    E107-A No:5
      Page(s):
    700-708

    Wide deployment of artificial intelligence (AI) is inducing exponentially growing energy consumption. Traditional digital platforms are becoming difficult to fulfill such ever-growing demands on energy efficiency as well as computing latency, which necessitates the development of high efficiency analog hardware platforms for AI. Recently, optical and electrooptic hybrid computing is reactivated as a promising analog hardware alternative because it can accelerate the information processing in an energy-efficient way. Integrated photonic circuits offer such an analog hardware solution for implementing photonic AI and machine learning. For this purpose, we proposed a photonic analog of support vector machine and experimentally demonstrated low-latency and low-energy classification computing, which evidences the latency and energy advantages of optical analog computing over traditional digital computing. We also proposed an electrooptic Hopfield network for classifying and recognizing time-series data. This paper will review our work on implementing classification computing and Hopfield network by leveraging silicon photonic circuits.

  • How the Author’s Group Came Up with Ideas in Analog/Mixed-Signal Circuit and System Area Open Access

    Haruo KOBAYASHI  

     
    INVITED PAPER

      Pubricized:
    2023/12/07
      Vol:
    E107-A No:5
      Page(s):
    681-699

    This article reviews the author’s group research achievements in analog/mixed-signal circuit and system area with introduction of how they came up with the ideas. Analog/mixed-signal circuits and systems have to be designed as well-balanced in many aspects, and coming up ideas needs some experiences and discussions with researchers. It is also heavily dependent on researchers. Here, the author’s group own experiences are presented as well as their research motivations.

  • Sense-Aware Decoder for Character Based Japanese-Chinese NMT Open Access

    Zezhong LI  Fuji REN  

     
    LETTER-Natural Language Processing

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    584-587

    Compared to subword based Neural Machine Translation (NMT), character based NMT eschews linguistic-motivated segmentation which performs directly on the raw character sequence, following a more absolute end-to-end manner. This property is more fascinating for machine translation (MT) between Japanese and Chinese, both of which use consecutive logographic characters without explicit word boundaries. However, there is still one disadvantage which should be addressed, that is, character is a less meaning-bearing unit than the subword, which requires the character models to be capable of sense discrimination. Specifically, there are two types of sense ambiguities existing in the source and target language, separately. With the former, it has been partially solved by the deep encoder and several existing works. But with the later, interestingly, the ambiguity in the target side is rarely discussed. To address this problem, we propose two simple yet effective methods, including a non-parametric pre-clustering for sense induction and a joint model to perform sense discrimination and NMT training simultaneously. Extensive experiments on Japanese⟷Chinese MT show that our proposed methods consistently outperform the strong baselines, and verify the effectiveness of using sense-discriminated representation for character based NMT.

  • A Monkey Swing Counting Algorithm Based on Object Detection Open Access

    Hao CHEN  Zhe-Ming LU  Jie LIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/12/07
      Vol:
    E107-D No:4
      Page(s):
    579-583

    This Letter focuses on deep learning-based monkeys' head swing counting problem. Nowadays, there are very few papers on monkey detection, and even fewer papers on monkeys' head swing counting. This research tries to fill in the gap and try to calculate the head swing frequency of monkeys through deep learning, where we further extend the traditional target detection algorithm. After analyzing object detection results, we localize the monkey's actions over a period. This Letter analyzes the task of counting monkeys' head swings, and proposes the standard that accurately describes a monkey's head swing. Under the guidance of this standard, the monkeys' head swing counting accuracy in 50 test videos reaches 94.23%.

  • VTD-FCENet: A Real-Time HD Video Text Detection with Scale-Aware Fourier Contour Embedding Open Access

    Wocheng XIAO  Lingyu LIANG  Jianyong CHEN  Tao WANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/12/07
      Vol:
    E107-D No:4
      Page(s):
    574-578

    Video text detection (VTD) aims to localize text instances in videos, which has wide applications for downstream tasks. To deal with the variances of different scenes and text instances, multiple models and feature fusion strategies were typically integrated in existing VTD methods. A VTD method consisting of sophisticated components can efficiently improve detection accuracy, but may suffer from a limitation for real-time applications. This paper aims to achieve real-time VTD with an adaptive lightweight end-to-end framework. Different from previous methods that represent text in a spatial domain, we model text instances in the Fourier domain. Specifically, we propose a scale-aware Fourier Contour Embedding method, which not only models arbitrary shaped text contours of videos as compact signatures, but also adaptively select proper scales for features in a backbone in the training stage. Then, we construct VTD-FCENet to achieve real-time VTD, which encodes temporal correlations of adjacent frames with scale-aware FCE in a lightweight and adaptive manner. Quantitative evaluations were conducted on ICDAR2013 Video, Minetto and YVT benchmark datasets, and the results show that our VTD-FCENet not only obtains the state-of-the-arts or competitive detection accuracy, but also allows real-time text detection on HD videos simultaneously.

  • App-Level Multi-Surface Framework for Supporting Cross-Platform User Interface Distribution Open Access

    Yeongwoo HA  Seongbeom PARK  Jieun LEE  Sangeun OH  

     
    LETTER-Information Network

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    564-568

    With the recent advances in IoT, there is a growing interest in multi-surface computing, where a mobile app can cooperatively utilize multiple devices' surfaces. We propose a novel framework that seamlessly augments mobile apps with multi-surface computing capabilities. It enables various apps to employ multiple surfaces with acceptable performance.

  • Construction of Ergodic GMM-HMMs for Classification between Healthy Individuals and Patients Suffering from Pulmonary Disease Open Access

    Masaru YAMASHITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2023/12/12
      Vol:
    E107-D No:4
      Page(s):
    544-550

    Owing to the several cases wherein abnormal sounds, called adventitious sounds, are included in the lung sounds of a patient suffering from pulmonary disease, the objective of this study was to automatically detect abnormal sounds from auscultatory sounds. To this end, we expressed the acoustic features of the normal lung sounds of healthy people and abnormal lung sounds of patients using Gaussian mixture model (GMM)-hidden Markov models (HMMs), and distinguished between normal and abnormal lung sounds. In our previous study, we constructed left-to-right GMM-HMMs with a limited number of states. Because we expressed abnormal sounds that occur intermittently and repeatedly using limited states, the GMM-HMMs could not express the acoustic features of abnormal sounds. Furthermore, because the analysis frame length and intervals were long, the GMM-HMMs could not express the acoustic features of short time segments, such as heart sounds. Therefore, the classification rate of normal and abnormal respiration was low (86.60%). In this study, we propose the construction of ergodic GMM-HMMs with a repetitive structure for intermittent sounds. Furthermore, we considered a suitable frame length and frame interval to analyze acoustic features. Using the ergodic GMM-HMM, which can express the acoustic features of abnormal sounds and heart sounds that occur repeatedly in detail, the classification rate increased (89.34%). The results obtained in this study demonstrated the effectiveness of the proposed method.

  • A Trie-Based Authentication Scheme for Approximate String Queries Open Access

    Yu WANG  Liangyong YANG  Jilian ZHANG  Xuelian DENG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/12/20
      Vol:
    E107-D No:4
      Page(s):
    537-543

    Cloud computing has become the mainstream computing paradigm nowadays. More and more data owners (DO) choose to outsource their data to a cloud service provider (CSP), who is responsible for data management and query processing on behalf of DO, so as to cut down operational costs for the DO.  However, in real-world applications, CSP may be untrusted, hence it is necessary to authenticate the query result returned from the CSP.  In this paper, we consider the problem of approximate string query result authentication in the context of database outsourcing. Based on Merkle Hash Tree (MHT) and Trie, we propose an authenticated tree structure named MTrie for authenticating approximate string query results. We design efficient algorithms for query processing and query result authentication. To verify effectiveness of our method, we have conducted extensive experiments on real datasets and the results show that our proposed method can effectively authenticate approximate string query results.

  • Boosting Spectrum-Based Fault Localization via Multi-Correct Programs in Online Programming Open Access

    Wei ZHENG  Hao HU  Tengfei CHEN  Fengyu YANG  Xin FAN  Peng XIAO  

     
    PAPER-Software Engineering

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    525-536

    Providing students with useful feedback on faulty programs can effectively help students fix programs. Spectrum-Based Fault Location (SBFL), which is a widely studied and lightweight technique, can automatically generate a suspicious value of statement ranking to help users find potential faults in a program. However, the performance of SBFL on student programs is not satisfactory, to improve the accuracy of SBFL in student programs, we propose a novel Multi-Correct Programs based Fault Localization (MCPFL) approach. Specifically, We first collected the correct programs submitted by students on the OJ system according to the programming problem numbers and removed the highly similar correct programs based on code similarity, and then stored them together with the faulty program to be located to construct a set of programs. Afterward, we analyzed the suspiciousness of the term in the faulty program through the Term Frequency-Inverse Document Frequency (TF-IDF). Finally, we designed a formula to calculate the weight of suspiciousness for program statements based on the number of input variables in the statement and weighted it to the spectrum-based fault localization formula. To evaluate the effectiveness of MCPFL, we conducted empirical studies on six student program datasets collected in our OJ system, and the results showed that MCPFL can effectively improve the traditional SBFL methods. In particular, on the EXAM metric, our approach improves by an average of 27.51% on the Dstar formula.

  • Grid Sample Based Temporal Iteration for Fully Pipelined 1-ms SLIC Superpixel Segmentation System Open Access

    Yuan LI  Tingting HU  Ryuji FUCHIKAMI  Takeshi IKENAGA  

     
    PAPER-Computer System

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    515-524

    A 1 millisecond (1-ms) vision system, which processes videos at 1000 frames per second (FPS) within 1 ms/frame delay, plays an increasingly important role in fields such as robotics and factory automation. Superpixel as one of the most extensively employed image oversegmentation methods is a crucial pre-processing step for reducing computations in various computer vision applications. Among the different superpixel methods, simple linear iterative clustering (SLIC) has gained widespread adoption due to its simplicity, effectiveness, and computational efficiency. However, the iterative assignment and update steps in SLIC make it challenging to achieve high processing speed. To address this limitation and develop a SLIC superpixel segmentation system with a 1 ms delay, this paper proposes grid sample based temporal iteration. By leveraging the high frame rate of the input video, the proposed method distributes the iterations into the temporal domain, ensuring that the system's delay keeps within one frame. Additionally, grid sample information is added as initialization information to the obtained superpixel centers for enhancing the stability of superpixels. Furthermore, a selective label propagation based pipeline architecture is proposed for parallel computation of all the possibilities of label propagation. This eliminates data dependency between adjacent pixels and enables a fully pipelined system. The evaluation results demonstrate that the proposed superpixel segmentation system achieves boundary recall and under-segmentation error comparable to the original SLIC algorithm. When considering label consistency, the proposed system surpasses the performance of state-of-the-art superpixel segmentation methods. Moreover, in terms of hardware performance, the proposed system processes 1000 FPS images with 0.985 ms/frame delay.

  • Multi-Style Shape Matching GAN for Text Images Open Access

    Honghui YUAN  Keiji YANAI  

     
    PAPER

      Pubricized:
    2023/12/27
      Vol:
    E107-D No:4
      Page(s):
    505-514

    Deep learning techniques are used to transform the style of images and produce diverse images. In the text style transformation field, many previous studies attempted to generate stylized text using deep learning networks. However, to achieve multiple style transformations for text images, the methods proposed in previous studies require learning multiple networks or cannot be guided by style images. Thus, in this study we focused on multistyle transformation of text images using style images to guide the generation of results. We propose a multiple-style transformation network for text style transfer, which we refer to as the Multi-Style Shape Matching GAN (Multi-Style SMGAN). The proposed method generates multiple styles of text images using a single model by training the model only once, and allows users to control the text style according to style images. The proposed method implements conditions to the network such that all styles can be distinguished effectively in the network, and the generation of each styled text can be controlled according to these conditions. The proposed network is optimized such that the conditional information can be transmitted effectively throughout the network. The proposed method was evaluated experimentally on a large number of text images, and the results show that the trained model can generate multiple-style text in realtime according to the style image. In addition, the results of a user survey study indicate that the proposed method produces higher quality results compared to existing methods.

  • Conceptual Knowledge Enhanced Model for Multi-Intent Detection and Slot Filling Open Access

    Li HE  Jingxuan ZHAO  Jianyong DUAN  Hao WANG  Xin LI  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-D No:4
      Page(s):
    468-476

    In Natural Language Understanding, intent detection and slot filling have been widely used to understand user queries. However, current methods tend to rely on single words and sentences to understand complex semantic concepts, and can only consider local information within the sentence. Therefore, they usually cannot capture long-distance dependencies well and are prone to problems where complex intentions in sentences are difficult to recognize. In order to solve the problem of long-distance dependency of the model, this paper uses ConceptNet as an external knowledge source and introduces its extensive semantic information into the multi-intent detection and slot filling model. Specifically, for a certain sentence, based on confidence scores and semantic relationships, the most relevant conceptual knowledge is selected to equip the sentence, and a concept context map with rich information is constructed. Then, the multi-head graph attention mechanism is used to strengthen context correlation and improve the semantic understanding ability of the model. The experimental results indicate that the model has significantly improved performance compared to other models on the MixATIS and MixSNIPS multi-intent datasets.

  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • Learning from Repeated Trials without Feedback: Can Collective Intelligence Outperform the Best Members? Open Access

    Yoshiko ARIMA  

     
    PAPER

      Pubricized:
    2023/10/18
      Vol:
    E107-D No:4
      Page(s):
    443-450

    Both group process studies and collective intelligence studies are concerned with “which of the crowds and the best members perform better.” This can be seen as a matter of democracy versus dictatorship. Having evidence of the growth potential of crowds and experts can be useful in making correct predictions and can benefit humanity. In the collective intelligence experimental paradigm, experts' or best members ability is compared with the accuracy of the crowd average. In this research (n = 620), using repeated trials of simple tasks, we compare the correct answer of a class average (index of collective intelligence) and the best member (the one whose answer was closest to the correct answer). The results indicated that, for the cognition task, collective intelligence improved to the level of the best member through repeated trials without feedback; however, it depended on the ability of the best members for the prediction task. The present study suggested that best members' superiority over crowds for the prediction task on the premise of being free from social influence. However, machine learning results suggests that the best members among us cannot be easily found beforehand because they appear through repeated trials.

  • An Automated Multi-Phase Facilitation Agent Based on LLM Open Access

    Yihan DONG  Shiyao DING  Takayuki ITO  

     
    PAPER

      Pubricized:
    2023/12/05
      Vol:
    E107-D No:4
      Page(s):
    426-433

    This paper presents the design and implementation of an automated multi-phase facilitation agent based on LLM to realize inclusive facilitation and efficient use of a large language model (LLM) to facilitate realistic discussions. Large-scale discussion support systems have been studied and implemented very widely since they enable a lot of people to discuss remotely and within 24 hours and 7 days. Furthermore, automated facilitation artificial intelligence (AI) agents have been realized since they can efficiently facilitate large-scale discussions. For example, D-Agree is a large-scale discussion support system where an automated facilitation AI agent facilitates discussion among people. Since the current automated facilitation agent was designed following the structure of the issue-based information system (IBIS) and the IBIS-based agent has been proven that it has superior performance. However, there are several problems that need to be addressed with the IBIS-based agent. In this paper, we focus on the following three problems: 1) The IBIS-based agent was designed to only promote other participants' posts by replying to existing posts accordingly, lacking the consideration of different behaviours taken by participants with diverse characteristics, leading to a result that sometimes the discussion is not sufficient. 2) The facilitation messages generated by the IBIS-based agent were not natural enough, leading to consequences that the participants were not sufficiently promoted and the participants did not follow the flow to discuss a topic. 3) Since the IBIS-based agent is not combined with LLM, designing the control of LLM is necessary. Thus, to solve the problems mentioned above, the design of a phase-based facilitation framework is proposed in this paper. Specifically, we propose two significant designs: One is the design for a multi-phase facilitation agent created based on the framework to address problem 1); The other one is the design for the combination with LLM to address problem 2) and 3). Particularly, the language model called “GPT-3.5” is used for the combination by using corresponding APIs from OPENAI. Furthermore, we demonstrate the improvement of our facilitation agent framework by presenting the evaluations and a case study. Besides, we present the difference between our framework and LangChain which has generic features to utilize LLMs.

  • 300-GHz-Band Dual-Band Bandstop Filter Based on Two Different Sized Split Ring Resonators Open Access

    Akihiko HIRATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:4
      Page(s):
    107-114

    For 6G mobile communications, it is important to realize a 300 GHz band bandpass filter that fits the occupied bandwidth of wireless communication system to prevent inter-system interference. This paper presents the design of a 300-GHz-band dual-band bandstop filter composed of two types of different sized split ring resonator (SRR) unit cells. The SRR unit cells are formed by a 5-μm-thick gold pattern on a 200-μm-thick quartz substrate. When two different-sized SRR unit cells are placed alternately on the same quartz substrate and the SRR unit cell size is over 260 μm, the stopbands of the dual-band bandstop filter are almost the same as those of the bandstop filter, which is composed of a single SRR unit cell. The insertion loss of the dual-band bandstop filter at 297.4 GHz is 1.8 dB and the 3-dB passband becomes 16.0 GHz (290.4-306.4 GHz). The attenuation in the two stopbands is greater than 20 dB. Six types of dual-band bandstop filters with different arrangement and different distance between SRR unit cells are prototyped, and the effect of the distance and arrangement between different sized SRR unit cells on the transmission characteristics of dual-band bandstop filters were clarified.

  • Coupling Analysis of Fiber-Type Polarization Splitter Open Access

    Taiki ARAKAWA  Kazuhiro YAMAGUCHI  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2023/10/27
      Vol:
    E107-C No:4
      Page(s):
    98-106

    We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.

  • Design and Fabrication of a Metasurface for Bandwidth Enhancement of RCS Reduction Based on Scattering Cancellation Open Access

    Hiroshi SUENOBU  Shin-ichi YAMAMOTO  Michio TAKIKAWA  Naofumi YONEDA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-C No:4
      Page(s):
    91-97

    A method for bandwidth enhancement of radar cross section (RCS) reduction by metasurfaces was studied. Scattering cancellation is one of common methods for reducing RCS of target scatterers. It occurs when the wave scattered by the target scatterer and the wave scattered by the canceling scatterer are the same amplitude and opposite phase. Since bandwidth of scattering cancellation is usually narrow, we proposed the bandwidth enhancement method using metasurfaces, which can control the frequency dependence of the scattering phase. We designed and fabricated a metasurface composed of a patch array on a grounded dielectric substrate. Numerical and experimental evaluations confirmed that the metasurface enhances the bandwidth of 10dB RCS reduction by 52% bandwidth ratio of the metasurface from 34% bandwidth ratio of metallic cancelling scatterers.

  • A Lightweight Graph Neural Networks Based Enhanced Separated Detection Scheme for Downlink MIMO-SCMA Systems Open Access

    Zikang CHEN  Wenping GE  Henghai FEI  Haipeng ZHAO  Bowen LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:4
      Page(s):
    368-376

    The combination of multiple-input multiple-output (MIMO) technology and sparse code multiple access (SCMA) can significantly enhance the spectral efficiency of future wireless communication networks. However, the receiver design for downlink MIMO-SCMA systems faces challenges in developing multi-user detection (MUD) schemes that achieve both low latency and low bit error rate (BER). The separated detection scheme in the MIMO-SCMA system involves performing MIMO detection first to obtain estimated signals, followed by SCMA decoding. We propose an enhanced separated detection scheme based on lightweight graph neural networks (GNNs). In this scheme, we raise the concept of coordinate point relay and full-category training, which allow for the substitution of the conventional message passing algorithm (MPA) in SCMA decoding with image classification techniques based on deep learning (DL). The features of the images used for training encompass crucial information such as the amplitude and phase of estimated signals, as well as channel characteristics they have encountered. Furthermore, various types of images demonstrate distinct directional trends, contributing additional features that enhance the precision of classification by GNNs. Simulation results demonstrate that the enhanced separated detection scheme outperforms existing separated and joint detection schemes in terms of computational complexity, while having a better BER performance than the joint detection schemes at high Eb/N0 (energy per bit to noise power spectral density ratio) values.

161-180hit(21534hit)