The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

41-60hit(21534hit)

  • Permissionless Blockchain-Based Sybil-Resistant Self-Sovereign Identity Utilizing Attested Execution Secure Processors Open Access

    Koichi MORIYAMA  Akira OTSUKA  

     
    INVITED PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-D No:9
      Page(s):
    1112-1122

    This article describes the idea of utilizing Attested Execution Secure Processors (AESPs) that fit into building a secure Self-Sovereign Identity (SSI) system satisfying Sybil-resistance under permissionless blockchains. Today’s circumstances requiring people to be more online have encouraged us to address digital identity preserving privacy. There is a momentum of research addressing SSI, and many researchers approach blockchain technology as a foundation. SSI brings natural persons various benefits such as owning controls; on the other side, digital identity systems in the real world require Sybil-resistance to comply with Anti-Money-Laundering (AML) and other needs. The main idea in our proposal is to utilize AESPs for three reasons: first is the use of attested execution capability along with tamper-resistance, which is a strong assumption; second is powerfulness and flexibility, allowing various open-source programs to be executed within a secure enclave, and the third is that equipping hardware-assisted security in mobile devices has become a norm. Rafael Pass et al.’s formal abstraction of AESPs and the ideal functionality $\color{brown}{\mathcal{G}_\mathtt{att}}$ enable us to formulate how hardware-assisted security works for secure digital identity systems preserving privacy under permissionless blockchains mathematically. Our proposal of the AESP-based SSI architecture and system protocols, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$, demonstrates the advantages of building a proper SSI system that satisfies the Sybil-resistant requirement. The protocols may eliminate the online distributed committee assumed in other research, such as CanDID, because of assuming AESPs; thus, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$ allows not to rely on multi-party computation (MPC), bringing drastic flexibility and efficiency compared with the existing SSI systems.

  • Computer-Aided Design of Cross-Voltage-Domain Energy-Optimized Tapered Buffers Open Access

    Zhibo CAO  Pengfei HAN  Hongming LYU  

     
    PAPER-Electronic Circuits

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:9
      Page(s):
    245-254

    This paper introduces a computer-aided low-power design method for tapered buffers that address given load capacitances, output transition times, and source impedances. Cross-voltage-domain tapered buffers involving a low-voltage domain in the frontier stages and a high-voltage domain in the posterior stages are further discussed which breaks the trade-off between the energy dissipation and the driving capability in conventional designs. As an essential circuit block, a dedicated analytical model for the level-shifter is proposed. The energy-optimized tapered buffer design is verified for different source and load conditions in a 180-nm CMOS process. The single-VDD buffer model achieves an average inaccuracy of 8.65% on the transition loss compared with Spice simulation results. Cross-voltage tapered buffers can be optimized to further remarkably reduce the energy consumption. The study finds wide applications in energy-efficient switching-mode analog applications.

  • Electrical and X-Ray Photoelectron Spectroscopy Studies of Ti/Al/Ti/Au Ohmic Contacts to AlGaN/GaN Open Access

    Hiroshi OKADA  Mao FUKINAKA  Yoshiki AKIRA  

     
    BRIEF PAPER

      Pubricized:
    2024/06/04
      Vol:
    E107-C No:9
      Page(s):
    241-244

    Effects of Al thickness in Ti/Al/Ti/Au ohmic contact on AlGaN/GaN heterostructures are studied. Samples having Al thickness of 30, 90 and 120 nm in Ti/Al/Ti/Au have been investigated by electrical and X-ray photoelectron spectroscopy (XPS) depth profile analysis. It is found that thick Al samples show lower resistance and formation of Al-based alloy under the oxidized Al layer.

  • Reduced Peripheral Leakage Current in Pin Photodetectors of Ge on n+-Si by P+ Implantation to Compensate Surface Holes Open Access

    Koji ABE  Mikiya KUZUTANI  Satoki FURUYA  Jose A. PIEDRA-LORENZANA  Takeshi HIZAWA  Yasuhiko ISHIKAWA  

     
    BRIEF PAPER

      Pubricized:
    2024/05/15
      Vol:
    E107-C No:9
      Page(s):
    237-240

    A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.

  • Modulation Recognition of Communication Signals Based on Cascade Network Open Access

    Yanli HOU  Chunxiao LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:9
      Page(s):
    620-626

    To improve the recognition rate of the end-to-end modulation recognition method based on deep learning, a modulation recognition method of communication signals based on a cascade network is proposed, which is composed of two networks: Stacked Denoising Auto Encoder (SDAE) network and DCELDNN (Dilated Convolution, ECA Mechanism, Long Short-Term Memory, Deep Neural Networks) network. SDAE network is used to denoise the data, reconstruct the input data through encoding and decoding, and extract deep information from the data. DCELDNN network is constructed based on the CLDNN (Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks) network. In the DCELDNN network, dilated convolution is used instead of normal convolution to enlarge the receptive field and extract signal features, the Efficient Channel Attention (ECA) mechanism is introduced to enhance the expression ability of the features, the feature vector information is integrated by a Global Average Pooling (GAP) layer, and signal features are extracted by the DCELDNN network efficiently. Finally, end-to-end classification recognition of communication signals is realized. The test results on the RadioML2018.01a dataset show that the average recognition accuracy of the proposed method reaches 63.1% at SNR of -10 to 15 dB, compared with CNN, LSTM, and CLDNN models, the recognition accuracy is improved by 25.8%, 12.3%, and 4.8% respectively at 10 dB SNR.

  • A Novel 3D Non-Stationary Vehicle-to-Vehicle Channel Model with Circular Arc Motions Open Access

    Zixv SU  Wei CHEN  Yuanyuan YANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:9
      Page(s):
    607-619

    In this paper, a cluster-based three-dimensional (3D) non-stationary vehicle-to-vehicle (V2V) channel model with circular arc motions and antenna rotates is proposed. The channel model simulates the complex urban communication scenario where clusters move with arbitrary velocities and directions. A novel cluster evolution algorithm with time-array consistency is developed to capture the non-stationarity. For time evolution, the birth-and-death (BD) property of clusters including birth, death, and rebirth are taken into account. Additionally, a visibility region (VR) method is proposed for array evolution, which is verified to be applicable to circular motions. Based on the Taylor expansion formula, a detailed derivation of space-time correlation function (ST-CF) with circular arc motions is shown. Statistical properties including ST-CF, Doppler power spectrum density (PSD), quasi-stationary interval, instantaneous Doppler frequency, root mean square delay spread (RMS-DS), delay PSD, and angular PSD are derived and analyzed. According to the simulated results, the non-stationarity in time, space, delay, and angular domains is captured. The presented results show that motion modes including linear motions as well as circular motions, the dynamic property of the scattering environment, and the velocity of the vehicle all have significant impacts on the statistical properties.

  • SLARS: Secure Lightweight Authentication for Roaming Service in Smart City Open Access

    Hakjun LEE  

     
    PAPER-Internet

      Vol:
    E107-B No:9
      Page(s):
    595-606

    Smart cities aim to improve the quality of life of citizens and efficiency of city operations through utilization of 5G communication technology. Based on various technologies such as IoT, cloud computing, artificial intelligence, and big data, they provide smart services in terms of urban planning, development, and management for solving problems such as fine dust, traffic congestion and safety, energy efficiency, water shortage, and an aging population. However, as smart city has an open network structure, an adversary can easily try to gain illegal access and perform denial of service and sniffing attacks that can threaten the safety and privacy of citizens. In smart cities, the global mobility network (GLOMONET) supports mobile services between heterogeneous networks of mobile devices such as autonomous vehicles and drones. Recently, Chen et al. proposed a user authentication scheme for GLOMONET in smart cities. Nevertheless, we found some weaknesses in the scheme proposed by them. In this study, we propose a secure lightweight authentication for roaming services in a smart city, called SLARS, to enhance security. We proved that SLARS is more secure and efficient than the related authentication scheme for GLOMONET through security and performance analysis. Our analysis results show that SLARS satisfies all security requirements in GLOMONET and saves 72.7% of computation time compared to that of Chen et al.’s scheme.

  • Stop-Probability-Based Network Topology Discovery Method Open Access

    Yuguang ZHANG  Zhiyong ZHANG  Wei ZHANG  Deming MAO  Zhihong RAO  

     
    PAPER-Network

      Vol:
    E107-B No:9
      Page(s):
    583-594

    Using a limited number of probes has always been a focus in interface-level network topology probing to discover complete network topologies. Stop-set-based network topology probing methods significantly reduce the number of probes sent but suffer from the side effect of incomplete topology information discovery. This study proposes an optimized probing method based on stop probabilities (SPs) that builds on existing stop-set-based network topology discovery methods to address the issue of incomplete topology information owing to multipath routing. The statistics of repeat nodes (RNs) and multipath routing on the Internet are analyzed and combined with the principles of stop-set-based probing methods, highlighting that stopping probing at the first RN compromises the completeness of topology discovery. To address this issue, SPs are introduced to adjust the stopping strategy upon encountering RNs during probing. A method is designed for generating SPs that achieves high completeness and low cost based on the distribution of the number of RNs. Simulation experiments demonstrate that the proposed stop-probability-based probing method almost completely discovers network nodes and links across different regions and times over a two-year period, while significantly reducing probing redundancy. In addition, the proposed approach balances and optimizes the trade-off between complete topology discovery and reduced probing costs compared with existing topology probing methods. Building on this, the factors influencing the probing cost of the proposed method and methods to further reduce the number of probes while ensuring completeness are analyzed. The proposed method yields universally applicable SPs in the current Internet environment.

  • A Distributed Efficient Blockchain Oracle Scheme for Internet of Things Open Access

    Youquan XIAN  Lianghaojie ZHOU  Jianyong JIANG  Boyi WANG  Hao HUO  Peng LIU  

     
    PAPER-Network System

      Vol:
    E107-B No:9
      Page(s):
    573-582

    In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.

  • A Novel Frequency Hopping Prediction Model Based on TCN-GRU Open Access

    Chen ZHONG  Chegnyu WU  Xiangyang LI  Ao ZHAN  Zhengqiang WANG  

     
    LETTER-Intelligent Transport System

      Pubricized:
    2024/04/19
      Vol:
    E107-A No:9
      Page(s):
    1577-1581

    A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.

  • Pre-T Event-Triggered Controller with a Gain-Scaling Factor for a Chain of Integrators and Its Extension to Strict-Feedback Nonlinearity Open Access

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2024/04/30
      Vol:
    E107-A No:9
      Page(s):
    1561-1564

    We propose a pre-T event-triggered controller (ETC) for the stabilization of a chain of integrators. Our per-T event-triggered controller is a modified event-triggered controller by adding a pre-defined positive constant T to the event-triggering condition. With this pre-T, the immediate advantages are (i) the often complicated additional analysis regarding the Zeno behavior is no longer needed, (ii) the positive lower bound of interexecution times can be specified, (iii) the number of control input updates can be further reduced. We carry out the rigorous system analysis and simulations to illustrate the advantages of our proposed method over the traditional event-triggered control method.

  • Enhanced Radar Emitter Recognition with Virtual Adversarial Training: A Semi-Supervised Framework Open Access

    Ziqin FENG  Hong WAN  Guan GUI  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/05/15
      Vol:
    E107-A No:9
      Page(s):
    1534-1541

    Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.

  • Deep Learning-Inspired Automatic Minutiae Extraction from Semi-Automated Annotations Open Access

    Hongtian ZHAO  Hua YANG  Shibao ZHENG  

     
    PAPER-Vision

      Pubricized:
    2024/04/05
      Vol:
    E107-A No:9
      Page(s):
    1509-1521

    Minutiae pattern extraction plays a crucial role in fingerprint registration and identification for electronic applications. However, the extraction accuracy is seriously compromised by the presence of contaminated ridge lines and complex background scenarios. General image processing-based methods, which rely on many prior hypotheses, fail to effectively handle minutiae extraction in complex scenarios. Previous works have shown that CNN-based methods can perform well in object detection tasks. However, the deep neural networks (DNNs)-based methods are restricted by the limitation of public labeled datasets due to legitimate privacy concerns. To address these challenges comprehensively, this paper presents a fully automated minutiae extraction method leveraging DNNs. Firstly, we create a fingerprint minutiae dataset using a semi-automated minutiae annotation algorithm. Subsequently, we propose a minutiae extraction model based on Residual Networks (Resnet) that enables end-to-end prediction of minutiae. Moreover, we introduce a novel non-maximal suppression (NMS) procedure, guided by the Generalized Intersection over Union (GIoU) metric, during the inference phase to effectively handle outliers. Experimental evaluations conducted on the NIST SD4 and FVC 2004 databases demonstrate the superiority of the proposed method over existing state-of-the-art minutiae extraction approaches.

  • Choco Banana is NP-Complete Open Access

    Chuzo IWAMOTO  Takeru TOKUNAGA  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2023/12/27
      Vol:
    E107-A No:9
      Page(s):
    1488-1491

    Choco Banana is one of Nikoli’s pencil puzzles. We study the computational complexity of Choco Banana. It is shown that deciding whether a given instance of the Choco Banana puzzle has a solution is NP-complete.

  • Rectangle-of-Influence Drawings of Five-Connected Plane Graphs Open Access

    Kazuyuki MIURA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2024/02/09
      Vol:
    E107-A No:9
      Page(s):
    1452-1457

    A rectangle-of-influence drawing of a plane graph G is a straight-line planar drawing of G such that there is no vertex in the proper inside of the axis-parallel rectangle defined by the two ends of any edge. In this paper, we show that any given 5-connected plane graph G with five or more vertices on the outer face has a rectangle-of-influence drawing in an integer grid such that W + H ≤ n - 2, where n is the number of vertices in G, W is the width and H is the height of the grid.

  • Artifact Removal Using Attention Guided Local-Global Dual-Stream Network for Sparse-View CT Reconstruction Open Access

    Chang SUN  Yitong LIU  Hongwen YANG  

     
    LETTER-Biological Engineering

      Pubricized:
    2024/03/29
      Vol:
    E107-D No:8
      Page(s):
    1105-1109

    Sparse-view CT reconstruction has gained significant attention due to the growing concerns about radiation safety. Although recent deep learning-based image domain reconstruction methods have achieved encouraging performance over iterative methods, effectively capturing intricate details and organ structures while suppressing noise remains challenging. This study presents a novel dual-stream encoder-decoder-based reconstruction network that combines global path reconstruction from the entire image with local path reconstruction from image patches. These two branches interact through an attention module, which enhances visual quality and preserves image details by learning correlations between image features and patch features. Visual and numerical results show that the proposed method has superior reconstruction capabilities to state-of-the-art 180-, 90-, and 45-view CT reconstruction methods.

  • Machine Learning-Based System for Heat-Resistant Analysis of Car Lamp Design Open Access

    Hyebong CHOI  Joel SHIN  Jeongho KIM  Samuel YOON  Hyeonmin PARK  Hyejin CHO  Jiyoung JUNG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/03
      Vol:
    E107-D No:8
      Page(s):
    1050-1058

    The design of automobile lamps requires accurate estimation of heat distribution to prevent overheating and deformation of the product. Traditional heat resistant analysis using Computational Fluid Dynamics (CFD) is time-consuming and requires expertise in thermofluid mechanics, making real-time temperature analysis less accessible to lamp designers. We propose a machine learning-based temperature prediction system for automobile lamp design. We trained our machine learning models using CFD results of various lamp designs, providing lamp designers real-time Heat-Resistant Analysis. Comprehensive tests on real lamp products demonstrate that our prediction model accurately estimates heat distribution comparable to CFD analysis within a minute. Our system visualizes the estimated heat distribution of car lamp design supporting quick decision-making by lamp designer. It is expected to shorten the product design process, improving the market competitiveness.

  • Agent Allocation-Action Learning with Dynamic Heterogeneous Graph in Multi-Task Games Open Access

    Xianglong LI  Yuan LI  Jieyuan ZHANG  Xinhai XU  Donghong LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/03
      Vol:
    E107-D No:8
      Page(s):
    1040-1049

    In many real-world problems, a complex task is typically composed of a set of subtasks that follow a certain execution order. Traditional multi-agent reinforcement learning methods perform poorly in such multi-task cases, as they consider the whole problem as one task. For such multi-agent multi-task problems, heterogeneous relationships i.e., subtask-subtask, agent-agent, and subtask-agent, are important characters which should be explored to facilitate the learning performance. This paper proposes a dynamic heterogeneous graph based agent allocation-action learning framework. Specifically, a dynamic heterogeneous graph model is firstly designed to characterize the variation of heterogeneous relationships with the time going on. Then a multi-subgraph partition method is invented to extract features of heterogeneous graphs. Leveraging the extracted features, a hierarchical framework is designed to learn the dynamic allocation of agents among subtasks, as well as cooperative behaviors. Experimental results demonstrate that our framework outperforms recent representative methods on two challenging tasks, i.e., SAVETHECITY and Google Research Football full game.

  • Confidence-Driven Contrastive Learning for Document Classification without Annotated Data Open Access

    Zhewei XU  Mizuho IWAIHARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/19
      Vol:
    E107-D No:8
      Page(s):
    1029-1039

    Data sparsity has always been a problem in document classification, for which semi-supervised learning and few-shot learning are studied. An even more extreme scenario is to classify documents without any annotated data, but using only category names. In this paper, we introduce a nearest neighbor search-based method Con2Class to tackle this tough task. We intend to produce embeddings for predefined categories and predict category embeddings for all the unlabeled documents in a unified embedding space, such that categories can be easily assigned by searching the nearest predefined category in the embedding space. To achieve this, we propose confidence-driven contrastive learning, in which prompt-based templates are designed and MLM-maintained contrastive loss is newly proposed to finetune a pretrained language model for embedding production. To deal with the issue that no annotated data is available to validate the classification model, we introduce confidence factor to estimate the classification ability by evaluating the prediction confidence. The language model having the highest confidence factor is used to produce embeddings for similarity evaluation. Pseudo labels are then assigned by searching the semantically closest category name, which are further used to train a separate classifier following a progressive self-training strategy for final prediction. Our experiments on five representative datasets demonstrate the superiority of our proposed method over the existing approaches.

  • Investigating and Enhancing the Neural Distinguisher for Differential Cryptanalysis Open Access

    Gao WANG  Gaoli WANG  Siwei SUN  

     
    PAPER-Information Network

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1016-1028

    At Crypto 2019, Gohr first adopted the neural distinguisher for differential cryptanalysis, and since then, this work received increasing attention. However, most of the existing work focuses on improving and applying the neural distinguisher, the studies delving into the intrinsic principles of neural distinguishers are finite. At Eurocrypt 2021, Benamira et al. conducted a study on Gohr’s neural distinguisher. But for the neural distinguishers proposed later, such as the r-round neural distinguishers trained with k ciphertext pairs or ciphertext differences, denoted as NDcpk_r (Gohr’s neural distinguisher is the special NDcpk_r with K = 1) and NDcdk_r , such research is lacking. In this work, we devote ourselves to study the intrinsic principles and relationship between NDcdk_r and NDcpk_r. Firstly, we explore the working principle of NDcd1_r through a series of experiments and find that it strongly relies on the probability distribution of ciphertext differences. Its operational mechanism bears a strong resemblance to that of NDcp1_r given by Benamira et al.. Therefore, we further compare them from the perspective of differential cryptanalysis and sample features, demonstrating the superior performance of NDcp1_r can be attributed to the relationships between certain ciphertext bits, especially the significant bits. We then extend our investigation to NDcpk_r, and show that its ability to recognize samples heavily relies on the average differential probability of k ciphertext pairs and some relationships in the ciphertext itself, but the reliance between k ciphertext pairs is very weak. Finally, in light of the findings of our research, we introduce a strategy to enhance the accuracy of the neural distinguisher by using a fixed difference to generate the negative samples instead of the random one. Through the implementation of this approach, we manage to improve the accuracy of the neural distinguishers by approximately 2% to 8% for 7-round Speck32/64 and 9-round Simon32/64.

41-60hit(21534hit)