The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

121-140hit(21534hit)

  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Simulation of Scalar-Mode Optically Pumped Magnetometers to Search Optimal Operating Conditions Open Access

    Yosuke ITO  Tatsuya GOTO  Takuma HORI  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    164-170

    In recent years, measuring biomagnetic fields in the Earth’s field by differential measurements of scalar-mode OPMs have been actively attempted. In this study, the sensitivity of the scalar-mode OPMs under the geomagnetic environment in the laboratory was studied by numerical simulation. Although the noise level of the scalar-mode OPM in the laboratory environment was calculated to be 104 pT/$\sqrt{\mathrm{Hz}}$, the noise levels using the first-order and the second-order differential configurations were found to be 529 fT/cm/$\sqrt{\mathrm{Hz}}$ and 17.2 fT/cm2/$\sqrt{\mathrm{Hz}}$, respectively. This result indicated that scalar-mode OPMs can measure very weak magnetic fields such as MEG without high-performance magnetic shield roomns. We also studied the operating conditions by varying repetition frequency and temperature. We found that scalar-mode OPMs have an upper limit of repetition frequency and temperature, and that the repetition frequency should be set below 4 kHz and the temperature should be set below 120°C.

  • A Novel Remote-Tracking Heart Rate Measurement Method Based on Stepping Motor and mm-Wave FMCW Radar Open Access

    Yaokun HU  Xuanyu PENG  Takeshi TODA  

     
    PAPER-Sensing

      Vol:
    E107-B No:6
      Page(s):
    470-486

    The subject must be motionless for conventional radar-based non-contact vital signs measurements. Additionally, the measurement range is limited by the design of the radar module itself. Although the accuracy of measurements has been improving, the prospects for their application could have been faster to develop. This paper proposed a novel radar-based adaptive tracking method for measuring the heart rate of the moving monitored person. The radar module is fixed on a circular plate and driven by stepping motors to rotate it. In order to protect the user’s privacy, the method uses radar signal processing to detect the subject’s position to control a stepping motor that adjusts the radar’s measurement range. The results of the fixed-route experiments revealed that when the subject was moving at a speed of 0.5 m/s, the mean values of RMSE for heart rate measurements were all below 2.85 beat per minute (bpm), and when moving at a speed of 1 m/s, they were all below 4.05 bpm. When subjects walked at random routes and speeds, the RMSE of the measurements were all below 6.85 bpm, with a mean value of 4.35 bpm. The average RR interval time of the reconstructed heartbeat signal was highly correlated with the electrocardiography (ECG) data, with a correlation coefficient of 0.9905. In addition, this study not only evaluated the potential effect of arm swing (more normal walking motion) on heart rate measurement but also demonstrated the ability of the proposed method to measure heart rate in a multiple-people scenario.

  • LSTM Neural Network Algorithm for Handover Improvement in a Non-Ideal Network Using O-RAN Near-RT RIC Open Access

    Baud Haryo PRANANTO   ISKANDAR   HENDRAWAN  Adit KURNIAWAN  

     
    PAPER-Network Management/Operation

      Vol:
    E107-B No:6
      Page(s):
    458-469

    Handover is an important property of cellular communication that enables the user to move from one cell to another without losing the connection. It is a very crucial process for the quality of the user’s experience because it may interrupt data transmission. Therefore, good handover management is very important in the current and future cellular systems. Several techniques have been employed to improve the handover performance, usually to increase the probability of a successful handover. One of the techniques is predictive handover which predicts the target cell using some methods other than the traditional measurement-based algorithm, including using machine learning. Several studies have been conducted in the implementation of predictive handover, most of them by modifying the internal algorithm of existing network elements, such as the base station. We implemented a predictive handover algorithm using an intelligent node outside the existing network elements to minimize the modification of the network and to create modularity in the system. Using a recently standardized Open Radio Access Network (O-RAN) Near Realtime Radio Intelligent Controller (Near-RT RIC), we created a modular application that can improve the handover performance by determining the target cell using machine learning techniques. In our previous research, we modified The Near-RT RIC original software that is using vector autoregression to determine the target cell by predicting the throughput of each neighboring cell. We also modified the method using a Multi-Layer Perceptron (MLP) neural network. In this paper, we redesigned the neural network using Long Short-Term Memory (LSTM) that can better handle time series data. We proved that our proposed LSTM-based machine learning algorithms used in Near-RT RIC can improve the handover performance compared to the traditional measurement-based algorithm.

  • Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks Open Access

    Rongqi ZHANG  Chunyun PAN  Yafei WANG  Yuanyuan YAO  Xuehua LI  

     
    PAPER-Network

      Vol:
    E107-B No:6
      Page(s):
    446-457

    With maturation of 5G technology in recent years, multimedia services such as live video streaming and online games on the Internet have flourished. These multimedia services frequently require low latency, which pose a significant challenge to compute the high latency requirements multimedia tasks. Mobile edge computing (MEC), is considered a key technology solution to address the above challenges. It offloads computation-intensive tasks to edge servers by sinking mobile nodes, which reduces task execution latency and relieves computing pressure on multimedia devices. In order to use MEC paradigm reasonably and efficiently, resource allocation has become a new challenge. In this paper, we focus on the multimedia tasks which need to be uploaded and processed in the network. We set the optimization problem with the goal of minimizing the latency and energy consumption required to perform tasks in multimedia devices. To solve the complex and non-convex problem, we formulate the optimization problem as a distributed deep reinforcement learning (DRL) problem and propose a federated Dueling deep Q-network (DDQN) based multimedia task offloading and resource allocation algorithm (FDRL-DDQN). In the algorithm, DRL is trained on the local device, while federated learning (FL) is responsible for aggregating and updating the parameters from the trained local models. Further, in order to solve the not identically and independently distributed (non-IID) data problem of multimedia devices, we develop a method for selecting participating federated devices. The simulation results show that the FDRL-DDQN algorithm can reduce the total cost by 31.3% compared to the DQN algorithm when the task data is 1000 kbit, and the maximum reduction can be 35.3% compared to the traditional baseline algorithm.

  • Physical Layer Security Enhancement for mmWave System with Multiple RISs and Imperfect CSI Open Access

    Qingqing TU  Zheng DONG  Xianbing ZOU  Ning WEI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:6
      Page(s):
    430-445

    Despite the appealing advantages of reconfigurable intelligent surfaces (RIS) aided mmWave communications, there remain practical issues that need to be addressed before the large-scale deployment of RISs in future wireless networks. In this study, we jointly consider the non-neglectable practical issues in a multi-RIS-aided mmWave system, which can significantly affect the secrecy performance, including the high computational complexity, imperfect channel state information (CSI), and finite resolution of phase shifters. To solve this non-convex challenging stochastic optimization problem, we propose a robust and low-complexity algorithm to maximize the achievable secrete rate. Specially, by combining the benefits of fractional programming and the stochastic successive convex approximation techniques, we transform the joint optimization problem into some convex ones and solve them sub-optimally. The theoretical analysis and simulation results demonstrate that the proposed algorithms could mitigate the joint negative effects of practical issues and yielded a tradeoff between secure performance and complexity/overhead outperforming non-robust benchmarks, which increases the robustness and flexibility of multiple RIS deployments in future wireless networks.

  • Dataset Distillation Using Parameter Pruning Open Access

    Guang LI  Ren TOGO  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER-Image

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:6
      Page(s):
    936-940

    In this study, we propose a novel dataset distillation method based on parameter pruning. The proposed method can synthesize more robust distilled datasets and improve distillation performance by pruning difficult-to-match parameters during the distillation process. Experimental results on two benchmark datasets show the superiority of the proposed method.

  • Performance of the Typical User in RIS-Assisted Indoor Ultra Dense Networks Open Access

    Sinh Cong LAM  Bach Hung LUU  Kumbesan SANDRASEGARAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E107-A No:6
      Page(s):
    932-935

    Cooperative Communication is one of the most effective techniques to improve the desired signal quality of the typical user. This paper studies an indoor cellular network system that deploys the Reconfigurable Intelligent Surfaces (RIS) at the position of BSs to enable the cooperative features. To evaluate the network performance, the coverage probability expression of the typical user in the indoor wireless environment with presence of walls and effects of Rayleigh fading is derived. The analytical results shows that the RIS-assisted system outperforms the regular one in terms of coverage probability.

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • Dynamic Limited Variable Step-Size Algorithm Based on the MSD Variation Cost Function Open Access

    Yufei HAN  Jiaye XIE  Yibo LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    919-922

    The steady-state and convergence performances are important indicators to evaluate adaptive algorithms. The step-size affects these two important indicators directly. Many relevant scholars have also proposed some variable step-size adaptive algorithms for improving performance. However, there are still some problems in these existing variable step-size adaptive algorithms, such as the insufficient theoretical analysis, the imbalanced performance and the unachievable parameter. These problems influence the actual performance of some algorithms greatly. Therefore, we intend to further explore an inherent relationship between the key performance and the step-size in this paper. The variation of mean square deviation (MSD) is adopted as the cost function. Based on some theoretical analyses and derivations, a novel variable step-size algorithm with a dynamic limited function (DLF) was proposed. At the same time, the sufficient theoretical analysis is conducted on the weight deviation and the convergence stability. The proposed algorithm is also tested with some typical algorithms in many different environments. Both the theoretical analysis and the experimental result all have verified that the proposed algorithm equips a superior performance.

  • Analysis of Blood Cell Image Recognition Methods Based on Improved CNN and Vision Transformer Open Access

    Pingping WANG  Xinyi ZHANG  Yuyan ZHAO  Yueti LI  Kaisheng XU  Shuaiyin ZHAO  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/15
      Vol:
    E107-A No:6
      Page(s):
    899-908

    Leukemia is a common and highly dangerous blood disease that requires early detection and treatment. Currently, the diagnosis of leukemia types mainly relies on the pathologist’s morphological examination of blood cell images, which is a tedious and time-consuming process, and the diagnosis results are highly subjective and prone to misdiagnosis and missed diagnosis. This research suggests a blood cell image recognition technique based on an enhanced Vision Transformer to address these problems. Firstly, this paper incorporate convolutions with token embedding to replace the positional encoding which represent coarse spatial information. Then based on the Transformer’s self-attention mechanism, this paper proposes a sparse attention module that can select identifying regions in the image, further enhancing the model’s fine-grained feature expression capability. Finally, this paper uses a contrastive loss function to further increase the intra-class consistency and inter-class difference of classification features. According to experimental results, The model in this study has an identification accuracy of 92.49% on the Munich single-cell morphological dataset, which is an improvement of 1.41% over the baseline. And comparing with sota Swin transformer, this method still get greater performance. So our method has the potential to provide reference for clinical diagnosis by physicians.

  • FA-YOLO: A High-Precision and Efficient Method for Fabric Defect Detection in Textile Industry Open Access

    Kai YU  Wentao LYU  Xuyi YU  Qing GUO  Weiqiang XU  Lu ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:6
      Page(s):
    890-898

    The automatic defect detection for fabric images is an essential mission in textile industry. However, there are some inherent difficulties in the detection of fabric images, such as complexity of the background and the highly uneven scales of defects. Moreover, the trade-off between accuracy and speed should be considered in real applications. To address these problems, we propose a novel model based on YOLOv4 to detect defects in fabric images, called Feature Augmentation YOLO (FA-YOLO). In terms of network structure, FA-YOLO adds an additional detection head to improve the detection ability of small defects and builds a powerful Neck structure to enhance feature fusion. First, to reduce information loss during feature fusion, we perform the residual feature augmentation (RFA) on the features after dimensionality reduction by using 1×1 convolution. Afterward, the attention module (SimAM) is embedded into the locations with rich features to improve the adaptation ability to complex backgrounds. Adaptive spatial feature fusion (ASFF) is also applied to output of the Neck to filter inconsistencies across layers. Finally, the cross-stage partial (CSP) structure is introduced for optimization. Experimental results based on three real industrial datasets, including Tianchi fabric dataset (72.5% mAP), ZJU-Leaper fabric dataset (0.714 of average F1-score) and NEU-DET steel dataset (77.2% mAP), demonstrate the proposed FA-YOLO achieves competitive results compared to other state-of-the-art (SoTA) methods.

  • Joint Selfattention-SVM DDoS Attack Detection and Defense Mechanism Based on Self-Attention Mechanism and SVM Classification for SDN Networks Open Access

    Wanying MAN  Guiqin YANG  Shurui FENG  

     
    PAPER-Human Communications

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:6
      Page(s):
    881-889

    Software Defined Networking (SDN), a new network architecture, allows for centralized network management by separating the control plane from the forwarding plane. Because forwarding and control is separated, distributed denial of service (DDoS) assaults provide a greater threat to SDN networks. To address the problem, this paper uses a joint high-precision attack detection combining self-attentive mechanism and support vector machine: a trigger mechanism deployed at both control and data layers is proposed to trigger the initial detection of DDoS attacks; the data in the network under attack is screened in detail using a combination of self-attentive mechanism and support vector machine; the control plane is proposed to initiate attack defense using the OpenFlow protocol features to issue flow tables for accurate classification results. The experimental results show that the trigger mechanism can react to the attack in time with less than 20% load, and the accurate detection mechanism is better than the existing inspection and testing methods, with a precision rate of 98.95% and a false alarm rate of only 1.04%. At the same time, the defense strategy can achieve timely recovery of network characteristics.

  • Fresh Tea Sprouts Segmentation via Capsule Network Open Access

    Chunhua QIAN  Xiaoyan QIN  Hequn QIANG  Changyou QIN  Minyang LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/01/17
      Vol:
    E107-D No:5
      Page(s):
    728-731

    The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • TECDR: Cross-Domain Recommender System Based on Domain Knowledge Transferor and Latent Preference Extractor Open Access

    Qi WANG  Yicheng DI  Lipeng HUANG  Guowei WANG  Yuan LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/01/18
      Vol:
    E107-D No:5
      Page(s):
    704-713

    When new users join a recommender system, traditional approaches encounter challenges in accurately understanding their interests due to the absence of historical user behavior data, thus making it difficult to provide personalized recommendations. Currently, two main methods are employed to address this issue from different perspectives. One approach is centered on meta-learning, enabling models to adapt faster to new tasks by sharing knowledge and experiences across multiple tasks. However, these methods often overlook potential improvements based on cross-domain information. The other method involves cross-domain recommender systems, which transfer learned knowledge to different domains using shared models and transfer learning techniques. Nonetheless, this approach has certain limitations, as it necessitates a substantial amount of labeled data for training and may not accurately capture users’ latent preferences when dealing with a limited number of samples. Therefore, a crucial need arises to devise a novel method that amalgamates cross-domain information and latent preference extraction to address this challenge. To accomplish this objective, we propose a Cross-domain Recommender System based on Domain Knowledge Transferor and Latent Preference Extractor (TECDR).  In TECDR, we have designed a Latent Preference Extractor that transforms user behaviors into representations of their latent interests in items. Additionally, we have introduced a Domain Knowledge Transfer mechanism for transferring knowledge and patterns between domains. Moreover, we leverage meta-learning-based optimization methods to assist the model in adapting to new tasks. The experimental results from three cross-domain scenarios demonstrate that TECDR exhibits outstanding performance across various cross-domain recommender scenarios.

  • Weighted Generalized Hesitant Fuzzy Sets and Its Application in Ensemble Learning Open Access

    Haijun ZHOU  Weixiang LI  Ming CHENG  Yuan SUN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/01/22
      Vol:
    E107-D No:5
      Page(s):
    694-703

    Traditional intuitionistic fuzzy sets and hesitant fuzzy sets will lose some information while representing vague information, to avoid this problem, this paper constructs weighted generalized hesitant fuzzy sets by remaining multiple intuitionistic fuzzy values and giving them corresponding weights. For weighted generalized hesitant fuzzy elements in weighted generalized hesitant fuzzy sets, the paper defines some basic operations and proves their operation properties. On this basis, the paper gives the comparison rules of weighted generalized hesitant fuzzy elements and presents two kinds of aggregation operators. As for weighted generalized hesitant fuzzy preference relation, this paper proposes its definition and computing method of its corresponding consistency index. Furthermore, the paper designs an ensemble learning algorithm based on weighted generalized hesitant fuzzy sets, carries out experiments on 6 datasets in UCI database and compares with various classification algorithms. The experiments show that the ensemble learning algorithm based on weighted generalized hesitant fuzzy sets has better performance in all indicators.

  • Multi-Dimensional Fused Gromov Wasserstein Discrepancy for Edge-Attributed Graphs Open Access

    Keisuke KAWANO  Satoshi KOIDE  Hiroaki SHIOKAWA  Toshiyuki AMAGASA  

     
    PAPER

      Pubricized:
    2024/01/12
      Vol:
    E107-D No:5
      Page(s):
    683-693

    Graph dissimilarities provide a powerful and ubiquitous approach for applying machine learning algorithms to edge-attributed graphs. However, conventional optimal transport-based dissimilarities cannot handle edge-attributes. In this paper, we propose an optimal transport-based dissimilarity between graphs with edge-attributes. The proposed method, multi-dimensional fused Gromov-Wasserstein discrepancy (MFGW), naturally incorporates the mismatch of edge-attributes into the optimal transport theory. Unlike conventional optimal transport-based dissimilarities, MFGW can directly handle edge-attributes in addition to structural information of graphs. Furthermore, we propose an iterative algorithm, which can be computed on GPUs, to solve non-convex quadratic programming problems involved in MFGW.  Experimentally, we demonstrate that MFGW outperforms the conventional optimal transport-based dissimilarity in several machine learning applications including supervised classification, subgraph matching, and graph barycenter calculation.

  • Automated Labeling of Entities in CVE Vulnerability Descriptions with Natural Language Processing Open Access

    Kensuke SUMOTO  Kenta KANAKOGI  Hironori WASHIZAKI  Naohiko TSUDA  Nobukazu YOSHIOKA  Yoshiaki FUKAZAWA  Hideyuki KANUKA  

     
    PAPER

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:5
      Page(s):
    674-682

    Security-related issues have become more significant due to the proliferation of IT. Collating security-related information in a database improves security. For example, Common Vulnerabilities and Exposures (CVE) is a security knowledge repository containing descriptions of vulnerabilities about software or source code. Although the descriptions include various entities, there is not a uniform entity structure, making security analysis difficult using individual entities. Developing a consistent entity structure will enhance the security field. Herein we propose a method to automatically label select entities from CVE descriptions by applying the Named Entity Recognition (NER) technique. We manually labeled 3287 CVE descriptions and conducted experiments using a machine learning model called BERT to compare the proposed method to labeling with regular expressions. Machine learning using the proposed method significantly improves the labeling accuracy. It has an f1 score of about 0.93, precision of about 0.91, and recall of about 0.95, demonstrating that our method has potential to automatically label select entities from CVE descriptions.

  • A Case Study on Recommender Systems in Online Conferences: Behavioral Analysis through A/B Testing Open Access

    Ayano OKOSO  Keisuke OTAKI  Yoshinao ISHII  Satoshi KOIDE  

     
    PAPER

      Pubricized:
    2024/01/16
      Vol:
    E107-D No:5
      Page(s):
    650-658

    Owing to the COVID-19 pandemic, many academic conferences are now being held online. Our study focuses on online video conferences, where participants can watch pre-recorded embedded videos on a conference website. In online video conferences, participants must efficiently find videos that match their interests among many candidates. There are few opportunities to encounter videos that they may not have planned to watch but may be of interest to them unless participants actively visit the conference. To alleviate these problems, the introduction of a recommender system seems promising. In this paper, we implemented typical recommender systems for the online video conference with 4,000 participants and analyzed users’ behavior through A/B testing. Our results showed that users receiving recommendations based on collaborative filtering had a higher continuous video-viewing rate and spent longer on the website than those without recommendations. In addition, these users were exposed to broader videos and tended to view more from categories that are usually less likely to view together. Furthermore, the impact of the recommender system was most significant among users who spent less time on the site.

121-140hit(21534hit)