The search functionality is under construction.

Keyword Search Result

[Keyword] TPC(17hit)

1-17hit
  • Workload-Driven Analysis on the Performance Characteristics of GPU-Accelerated DBMSes

    Junyoung AN  Young-Kyoon SUH  Byungchul TAK  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E105-D No:11
      Page(s):
    1984-1989

    This letter conducts an in-depth empirical analysis of the influence of various query characteristics on the performance of modern GPU DBMSes. Our analysis reveals that, although they can efficiently process concurrent queries, the GPU DBMSes we consider still should address various performance concerns including n-way joins, aggregates, and selective scans.

  • Reducing I/O Cost in OLAP Query Processing with MapReduce

    Woo-Lam KANG  Hyeon-Gyu KIM  Yoon-Joon LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2014/10/22
      Vol:
    E98-D No:2
      Page(s):
    444-447

    This paper presents a method to reduce I/O cost in MapReduce when online analytical processing (OLAP) queries are used for data analysis. The proposed method consists of two basic ideas. First, to reduce network transmission cost, mappers are organized to receive only data necessary to perform a map task, not an entire set of input data. Second, to reduce storage consumption, only record IDs are stored for checkpointing, not the raw records. Experiments conducted with TPC-H benchmark show that the proposed method is about 40% faster than Hive, the well-known data warehouse solution for MapReduce, while reducing the size of data stored for checkpoining to about 80%.

  • Field and Indoor Experimental Results of E-UTRA Uplink

    Naoto OKUBO  Yoshiaki OFUJI  Sadayuki ABETA  Takehiro NAKAMURA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1714-1724

    This paper investigates the uplink throughput performance and the interference power to other cells using an Evolved UTRA (E-UTRA) laboratory and field experimental system. In E-UTRA uplink, the near-far problem is not an issue since the orthgonality among the users within the target cell is maintained. Therefore, the fractional transmission power control (TPC), in which the target level of TPC is adjusted according to the path loss level, can be adopted. Thus, it is expected the high cell throughput and the large coverage area by combining fractional TPC, adaptive modulation and channel coding (AMC), and variable resource block (RB) allocation. The indoor and field experimental results show that the peak throughput of approximately 45 Mbps is achieved by allocating a wider bandwidth and setting higher target level for the UE located near the cell site while keeping the adjacent cell interference level almost the constant. We also showed that the system capacity can be improved by 50% in simple cell model by applying the AMC and the fractional TPC.

  • Combined Effect of Random Transmit Power Control and Inter-Path Interference Cancellation on DS-CDMA Packet Mobile Communications

    Eisuke KUDOH  Haruki ITO  ZhiSen WANG  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1589-1596

    In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.

  • Signal Strength Based Energy Efficient Routing for Ad Hoc Networks

    Masaki BANDAI  Satoshi NAKAYAMA  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    1006-1014

    In this paper, we propose a novel energy-efficient route-discovery scheme with transmission power control (TPC) for ad hoc networks. The proposed scheme is very simple and improves energy efficiency without any information about neighbor nodes. In the proposed scheme, when a node receives a route request (RREQ), the node calculates the routing-level backoff time as being inversely proportional to the received power of the RREQ. After the route discovery, source and intermediate nodes transmit packets by the power-controlled medium access control (MAC) protocol. In addition, we propose an extended version of the proposed scheme for discrete power control devices. Simulation results demonstrate the proposed schemes can discover more energy efficient routes than the conventional schemes.

  • Analysis of Polarization Diversity Gain at Base Station in W-CDMA System

    Masaru FUKUSHIGE  Tetsurou IMAI  

     
    PAPER-Propagation

      Vol:
    E90-B No:9
      Page(s):
    2360-2368

    There have been many theoretical and experimental investigations on polarization diversity reception characteristics at base stations. The diversity gain was evaluated based on the distribution of the instantaneous received power in these investigations. The mainstream mobile communication systems are shifting to standardized IMT-2000 systems and the W-CDMA system is one of them. The effect using base station polarization diversity in W-CDMA must be evaluated by considering not only antenna diversity, but also RAKE reception/path diversity. Furthermore, Transmit Power Control (TPC) is applied to overcome the near-far problem of mobile units that maintain a fixed reception power level in W-CDMA systems. Therefore, traditional diversity gain cannot be used as an evaluation metric. This paper proposes a theoretical analysis method for diversity gain using base station polarization diversity in W-CDMA. The evaluation model used for theoretical analysis is verified based on a comparison with the experimental results and the analytical results of the practical diversity gain are clarified.

  • Intra-Cell Allocation Information and Inter-Cell Interference Distribution Based TPC for High-Speed CDMA Packet Radio

    Heng QIU  Hidetoshi KAYAMA  Narumi UMEDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:11
      Page(s):
    4301-4308

    We aim to establish a highly efficient transmitting power control (TPC) scheme suitable for the reverse link of high-speed CDMA packet communication systems. Reservation-based access is assumed to be used for packet transmission in the reverse link. First, we describe a hybrid TPC that we created to cope with average interference changes. The target receiving power in the hybrid TPC is set according to the interference averaged over a comparatively long period of time. We show, using experiments on our high-speed packet communication experimental system, that hybrid TPC can effectively reduce transmission power consumption and PER compared with basic receiving power based TPC. Furthermore, we need to change the transmitting power according to the instantaneous interference to cope with instantaneous interference changes slot by slot. However, in a high-speed packet communication system, the interference level can change dramatically in a very short period of time. The TPC of cdma2000 or W-CDMA cannot efficiently cope with rapidly and greatly changing interference levels. Therefore, we created another two novel TPCs. Interference is divided in these TPCs into intra-cell and inter-cell interference. The supposed inter-cell interference level is changed according to the change in the probability distribution of the inter-cell interference, and the necessary transmitting power for a packet is calculated based on intra-cell allocation information and the supposed inter-cell interference level. Computer simulations show that, with the proposed TPCs, throughput can be increased by more than 200% compared with the type of TPC used in cdma2000 or W-CDMA, and the transmitting power consumption in a mobile host (MH) can also be vastly reduced.

  • Enhancement of Data Throughput in the AMC-Employed DS-CDMA Systems through Suppression of Channel Frequency Selectivity by a MTMR Antenna System

    Jaewan KIM  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:4
      Page(s):
    1622-1631

    In this paper, a new algorithm for MTMR adaptive array antenna (AAA) system combined with analog-type transmit power control (TPC) is proposed for DS-CDMA systems in order to employ high level modulation schemes like 64 QAM in wireless multimedia services. A conventional AAA system considering the strongest path as a target path cannot work effectively when angular dispersion between the strongest path and other delayed paths is large, that is, beam selectivity is so small due to severe frequency selective multipath fading. So, in order to solve such a beam selectivity problem, a beam directivity control scheme using a path manipulation technique is introduced for the BS and MS AAA combining in this paper, along with analog-type TPC. It utilizes virtual delay profiles which are modified from the measured complex delay profile and selects a desired path giving the maximum DUR with an optimized weight vector for BS and MS beamforming. We will show through computer simulation that the proposed scheme is very effective in enhancing the data throughput at the downlink of wideband DS-CDMA systems as compared with the conventional system.

  • Capacity Estimation for an Uplink Synchronised CDMA System with Fast TPC and Two-Antenna Diversity Reception

    Duk Kyung KIM  Seung-Hoon HWANG  Een-Kee HONG  Sang Yun LEE  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E84-B No:8
      Page(s):
    2309-2312

    An uplink synchronised CDMA system through transmission timing control at mobile users has been proposed to improve the uplink capacity. This Letter mathematically investigates its capacity, considering perfect fast TPC and two antenna diversity reception in a single cell environment and compares it with that of a conventional CDMA system.

  • Transmitting Array Antenna Beamforming Based on Goal Programming for Forward Link of DS-CDMA System

    Tsuguhide AOKI  Norimichi HIRANO  Ryuji KOHNO  

     
    PAPER-Application to CDMA

      Vol:
    E84-B No:7
      Page(s):
    1861-1870

    This paper investigates the improvement of the radiation pattern design of transmitting array antenna beamforming and transmission power control (TPC) for forward link of DS-CDMA/FDD system. Optimum transmission beamforming and TPC can be derived from the information of the propagation channel for the forward link, in terms of outage probability minimization. It is assumed that the channel is static and then all mobile stations (MS's) report channel characteristics measured in the forward link to a base station (BS) that can control signal to interference plus noise ratios (SINR's) received by individual MS's using that measured information. Then, for the multi-user environment of a single cell, goal programming (GP) is applied to derive an optimum weight vector of the transmitting array antenna and optimum TPC such that outage probability can be minimized.

  • Experiments on 2-Mbps Data Transmission Applying Antenna Diversity Reception over 5-MHz W-CDMA Mobile Radio Link

    Koichi OKAWA  Satoru FUKUMOTO  Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1602-1609

    This paper experimentally demonstrates the possibility of 2-Mbps data transmission using a 5-MHz bandwidth (chip rate of 4.096 Mcps) wideband DS-CDMA (W-CDMA) mobile radio link in frequency-selective multipath fading environments. To reduce the mobile station transceiver complexity, three-orthogonal code multiplexing with the spreading factor (SF) of 4 is employed. In such a small SF transmission, the increased multipath interference (MPI) significantly degrades the transmission performance. We consider two-branch antenna diversity reception and fast transmit power control (TPC) as well as channel coding to mitigate the influence of MPI. Laboratory experimental results show that the use of antenna diversity reception is significant and that the fast TPC improves the transmission performance. Furthermore, the impact of the fading maximum Doppler frequency, fD, and that of the channel coding interleaving size, Tint, on the achievable BER performance are also investigated.

  • Effect of Fast Transmit Power Control on Forward Link Capacity of DS-CDMA Cellular Mobile Radio

    Fumio KIKUCHI  Hirohito SUDA  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E83-B No:1
      Page(s):
    47-55

    This paper proposes applying fast transmit power control (TPC) to the forward link of a direct sequence-code division multi-access (DS-CDMA) cellular system. Orthogonal spreading is assumed at a base station transmitter and coherent RAKE combining is assumed at a mobile station receiver. In DS-CDMA cellular mobile radio, the multiple access interference (MAI) from other cells and background noise limit the forward link capacity. Therefore, to increase the link capacity, fast transmit power control (TPC) can be introduced, which is similar to that developed for the reverse link, i. e. , the transmit powers of forward link channels are independently raised or lowered according to the instantaneous signal-to-background noise plus interference ratios (SIR's) measured at mobile stations. Fast TPC is fast enough to track the multipath fading as well as slow variations in the distance-dependence path loss and shadowing. On the average, the transmit power is increased to a user closer to the cell edge so that the effects of both other-cell MAI and background noise can be reduced while it is decreased to a user closer to the cell center. The effect of the TPC parameters (TPC interval, TPC target value, TPC step size, etc) on the forward link capacity in single- and multi-cell environments is evaluated by computer simulation. It is shown that fast TPC can almost double the forward link capacity in a multi-cell environment.

  • Capacity Evaluation of a Forward Link DS-CDMA Cellular System with Fast TPC Based on SIR

    Dugin LYU  Hirohito SUDA  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E83-B No:1
      Page(s):
    68-76

    The outage probability of a forward link DS-CDMA cellular system with fast transmit power control (TPC) based on signal-to-interference ratio (SIR) is investigated. The expression for SIR at the output of RAKE receiver is developed, and the outage probability is evaluated by using Monte Carlo simulation. We consider two kinds of channel models: random delay resolvable path model and tapped delay line model which are suitable models for a few distinct paths channel and highly frequency-selective-channel model, respectively. The outage probability of a system with fast TPC based on SIR is compared to that without fast TPC. The use of orthogonal spreading codes is compared to that of the random spreading codes in terms of outage probability. The effects of the maximum and minimum transmit powers and the dispersive loss of signal power on the outage probability are also investigated.

  • A Fast Transmit Power Control Based on Markov Transition for DS-CDMA Mobile Radio

    Hirohito SUDA  Hiroyuki KAWAI  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:8
      Page(s):
    1353-1362

    On the reverse (mobile-to-base) link of direct sequence code division multiple access (DS-CDMA) mobile radio, closed-loop fast transmit power control (TPC) must be sufficiently fast to track fast multipath fading. However, in urban areas, the line-of-sight (LOS) path may appear abruptly when a mobile station appears from behind a building and later suddenly the LOS may disappear, resulting in an abrupt path-loss change in the order of 30 to 40 dB. This "on-off" path loss change can be considered as a special case of shadowing. This "on-off" shadowing causes two problems at the base station: generation of severe multiple access interference (MAI) to other users when the LOS path appears and degradation of the quality of its own signal when the LOS path disappears. This paper proposes a new closed-loop fast TPC based on Markov-state transitions (called Markov fast TPC). State transition is determined by the past history of the received binary TPC commands sent from the base station. The TPC step size is associated with each state. By changing the step size between as small as 0.8 dB and as large as 4 dB, the Markov fast TPC can better track "on-off" shadowing as well as multipath fading compared to conventional one-state closed-loop fast TPC. A new SIR estimation method used in TPC command generation is also proposed. The TPC error is evaluated by computer simulation to demonstrate the adaptability of the proposed Markov fast TPC in a Rayleigh fading channel superimposed by "on-off" shadowing.

  • High Performance Parallel Query Processing on a 100 Node ATM Connected PC Cluster

    Takayuki TAMURA  Masato OGUCHI  Masaru KITSUREGAWA  

     
    PAPER-Query Processing

      Vol:
    E82-D No:1
      Page(s):
    54-63

    We developed a PC cluster system which consists of 100 PCs as a test bed for massively parallel query processing. Each PC employs the 200 MHz Pentium Pro CPU and is connected with others through an ATM switch. Because the query processing applications are insensitive to the communication latency and mainly perform integer operations, the ATM connected PC cluster approach can be considered a reasonable solution for high performance database servers with low costs. However, there has been no challenge to construct large scale PC clusters for database applications, as far as the authors know. Though we employed commodity components as much as possible, we developed the DBMS itself, because that was a key component for obtaining high performance in parallel query processing, and there seemed no system which could meet our demand. On each PC node, a server program which acts as a database kernel is running to process the queries in cooperation with other nodes. The kernel was designed to execute pipelined operators and handle voluminous data efficiently, to achieve high performance on complex decision support type queries. We used the standard benchmark, TPC-D, on a 100 GB database to verify the feasibility of our approach, through comparison of our system with commercial parallel systems. As a whole, our system exhibited sufficiently high performance which was competitive with the current TPC-D top records, in spite of not using indices. For some heavy queries in the benchmark, which have high selectivity and joinability, our system performed much better. In addition, we applied transposed file organization to the database for further performance improvement. The transposed file organization vertically partitions the tuples, enabling attribute-by-attribute access to the relations. This resulted in significant performance improvement by reducing the amount of disk I/O and shifting the bottleneck to computation.

  • Performance Evaluation of CDMA Adaptive Interference Canceller with RAKE Structure Using Developed Testbed in Multiuser and Multipath Fading Environment

    Hironori MIZUGUCHI  Shousei YOSHIDA  Akihisa USHIROKAWA  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2311-2318

    In this paper, we describe the implementation of the proposed single user type CDMA adaptive interference canceller (AIC) with RAKE structure in the developed testbed for the base station, and evaluate its performance in the multiuser and multipath fading environment. Laboratory experiment demonstrates that the AIC receiver is much more near-far resistant than the conventional matched filter (MF) receiver in the multiuser case. When the power of the other users is 6 dB larger than that of the desired user, the AIC receiver can achieve the BER of 10-3 at C/PG = 33. 3 % in the 2-path fading channel, while the MF receiver cannot achieve the BER at C/PG of more than 20. 8%. Furthermore, we evaluate the effect of transmission power reduction in the transmitter with transmission power control (TPC). The experimental result shows that the required transmission power can be greatly reduced by 3. 0 dB and 9. 2 dB with the AIC receiver at C/PG = 29. 2 % and 33. 3%, respectively.

  • Performance Evaluation on Power Control and Diversity of Next-Generation CDMA System

    Hironori MIZUGUCHI  Akio AOYAMA  Shousei YOSHIDA  Akihisa USHIROKAWA  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1345-1354

    In this paper, we briefly describe the proposed radio access scheme based on CDMA/FDD for next-generation mobile radio systems, and evaluate its performance through laboratory and field experiments on transmission power control (TPC) and diversity, which are the key technologies to achieve efficient CDMA systems. The design of the practical TPC method is discussed, and a robust method is presented for operation in low signal to interference power ratio (SIR). Laboratory experiments demonstrate that space and path diversity effectively improve the TPC performance in the Doppler frequency range of 40 to 80 Hz, and reduces the required Eb/N0 to achieve the BER of 10-3. The necessary diversity order for multipath fading mitigation in all the Doppler frequency range is also investigated. Through the field experiments in urban area of Tokyo using a developed system at 0. 96 Mcps, a low required Eb/N0 of 2. 8 dB can be obtained because of the effectiveness of the diversity.