The search functionality is under construction.

Keyword Search Result

[Keyword] active integrated antenna(9hit)

1-9hit
  • A Beam-Switchable Self-Oscillating Active Integrated Array Antenna Using Gunn Oscillator and Magic-T

    Maodudul HASAN  Eisuke NISHIYAMA  Ichihiko TOYODA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1419-1428

    Herein, a novel self-oscillating active integrated array antenna (AIAA) is proposed for beam switching X-band applications. The proposed AIAA comprises four linearly polarized microstrip antenna elements, a Gunn oscillator, two planar magic-Ts, and two single-pole single-throw (SPST) switches. The in/anti-phase signal combination approach employing planar magic-Ts is adopted to attain bidirectional radiation patterns in the φ =90° plane with a simple structure. The proposed antenna can switch its beam using the SPST switches. The antenna is analyzed through simulations, and a prototype of the antenna is fabricated and tested to validate the concept. The proposed concept is found to be feasible; the prototype has an effective isotropic radiated power of +15.98dBm, radiated power level of +4.28dBm, and cross-polarization suppression of better than 15dB. The measured radiation patterns are in good agreement with the simulation results.

  • Compact and High-Power Spatial Power Combiner by Active Integrated Antenna Technique at 5.8 GHz

    Harunobu SEITA  Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1757-1764

    Compact and planar active integrated antenna arrays with a high power multi-stage amplifier were developed with effective heat sink mechanism. By attaching an aluminum plate to the backside of the creased amplifier circuit board, effective cooling can be achieved. The nonlinear behavior of the amplifier agrees well with the simulation based on the Angelov model. The high power amplifier circuit consisted of the three-stage amplifier and operated with an output power of 4 W per each element at 5.8 GHz. The 32-element active integrated antenna array stably operated with the output power of 120 W under the effective heat sink design. With a weight of 4 kg, the weight-to-output power ratio and the volume-to-output power ratio of the antenna array are 33.3 g/W and 54.5 cm3/W, respectively. Wireless power transmission was also successfully demonstrated.

  • An Efficient LE-FDTD Method for the Analysis of the Active Integrated Circuit and Antenna Mounted Non-linear Devices

    Kazuhiro FUJIMORI  Naoto KAWASHIMA  Minoru SANAGI  Shigeji NOGI  

     
    PAPER-Antennas/Systems

      Vol:
    E90-C No:9
      Page(s):
    1776-1783

    The trend of microwave circuits has been toward highly integrated systems. Most design tools for designing microwave circuits mounted the linear or the nonlinear devices adopt the fundamental circuit theory using the S matrix on the frequency domain. The harmonic balance method is also used to correspond to the nonlinear circuit. Therefore, the effect of the electromagnetic field, for example, a mutual coupling between sub-circuits through the space is almost disregarded. To calculate these circuits included its surrounding electromagnetic field, the finite difference time domain method combined with the equivalent circuit simulation had been presented as the lumped element FDTD (LE-FDTD) method. In general, even if an analytical target is a linear circuit, the FDTD method requires very long analytical time. In this paper, we propose an efficient LE-FDTD method to reduce the analytical time. We investigate its efficiency to compare with the conventional LE-FDTD method or measurements, consequently, it is confirmed that the proposal method requires only at analytical time of 1/10 compared with the conventional method. We also show that the proposal method is able to analyze characteristics of the active integrated antenna (AIA) which are practicably impossible to analyze by using the conventional method.

  • A Self-Biased Receiver System Using the Active Integrated Antenna

    Sang-Min HAN  Ji-Yong PARK  Tatsuo ITOH  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    570-575

    A simple self-biased receiver system with a dual branch architecture consisting of a low-power consumption receiver and a rectenna is introduced. The system is efficiently integrated with a dual-fed circular sector antenna with harmonic rejection characteristics without a BPF. The receiver portion is designed by utilizing a low-noise amplifier (LNA) with low power consumption and a self-heterodyne mixer, while the rectenna achieves high conversion efficiency up to 80%, thanks to the harmonic rejection of the circular sector antenna. The rectified DC power from the rectenna is applied for a bias of the receiver without any external bias. Simultaneously, an ASK digital signal demodulation without an extra power supply are implemented successfully.

  • Advanced and Intelligent RF Front End Technology

    Kevin M.K.H. LEONG  Ji-Yong PARK  Yuanxun WANG  Tatsuo ITOH  

     
    INVITED PAPER

      Vol:
    E87-C No:9
      Page(s):
    1495-1502

    Integrated implementation of RF front-end components has been shown to posses many benefits. Furthermore, it presents a new way of approaching RF design. This paper will discuss the recent developments by the author's group in the field of RF front-end technology. This will include stand-alone RF front-end components such as a self-heterodyne mixer as well as more functional front-end circuitry such as digital beamformer arrays, retrodirective arrays and an array error calibration scheme.

  • AlGaN/GaN HEMT X-Band Frequency Doublers with Novel Fundamental Frequency Reflector Scheme

    Younkyu CHUNG  Kevin M.K.H. LEONG  Tatsuo ITOH  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1416-1421

    The first implementations of X-band AlGaN/GaN HEMT single-ended frequency doublers are presented in this paper. Two types of fundamental frequency signal reflector schemes have been demonstrated for the frequency doubler application. Open-circuited quarter-wavelength microstrip line at the fundamental frequency is utilized for the reflector in a conventional way. In the other architecture a printed antenna is employed as a radiator as well as a novel fundamental frequency reflector. A microstrip rectangular patch antenna operating at the second harmonic frequency of the doubler was designed and integrated with AlGaN/GaN HEMT based on active integrated antenna design concept. Using AlGaN/GaN HEMT with 1 mm gate periphery, two 4 to 8 GHz frequency doublers were designed by the described design methodologies, fabricated, and tested. For the conventional frequency doubler, a conversion gain of 0.6 dB and with an output power of 15 dBm was observed. A conversion gain of 5 dB and an output power of 25 dBm with embedded antenna gain were achieved at a drain voltage of 12 V for the doubler integrated with the patch antenna.

  • 25 GHz Band Active Integrated Antenna for Broadband Mobile Wireless Access Systems

    Tomohiro SEKI  Fusao NUNO  Takeo ATSUGI  Masahiro UMEHIRA  Junji SATO  Takashi ENOKI  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1520-1526

    This paper first presents an active integrated antenna configuration designed for broadband mobile wireless access systems using the 25-GHz band. This active integrated antenna comprises a microstrip antenna array and RF front-end circuits adopting spatial power combining schemes for reduced power consumption of the power amplifiers. Furthermore, the antenna and RF circuits are integrated into each side of a thick copper backing plate and both are connected through microstrip line /slot transitions. The developed active integrated antenna achieves the output power of 14.6 dBm and a noise figure of less than 5 dB. The wireless system using the developed active integrated antenna achieves a 6-dB improvement in the packet error rate compared to that using a passive antenna with the same array design as the active integrated antenna. Furthermore, we obtained the first license of the active integrated antenna for commercial use in high-speed wireless communication systems in Japan.

  • Active Integrated Antennas

    Peter S. HALL  Peter GARDNER  Guozhong MA  

     
    INVITED PAPER

      Vol:
    E85-B No:9
      Page(s):
    1661-1667

    Active integrated antennas are a maturing topic. Many novel configurations have been described and system designers are how investigating how the advantages of compactness and increased functionality can be exploited in applications. In this paper, the various types of integrated antennas are discussed together with possible ways of exploiting the technology. New configurations of direct conversion integrated antennas are then described in detail, which illustrate some of the possibilities inherent in the technology.

  • High Efficient Spatial Power Combining Utilizing Active Integrated Antenna Technique

    Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    800-805

    This paper describes a concept of the quasioptical spatial power combining technique and its demonstration of active integrated antenna arrays with strong coupling as an actual example of high efficient combiner in high frequencies. Some configurations of the arrays such as a 3-element linear array and a 33 array are designed with a circuit and electromagnetic simulator. In order to predict the operating frequencies, large signal FET model parameters are determined from measured small signal S-parameters.