The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] adaptive(1138hit)

181-200hit(1138hit)

  • High-Performance Regulated Charge Pump with an Extended Range of Load Current

    Roger Yubtzuan CHEN  Zong-Yi YANG  Hongchin LIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E99-C No:1
      Page(s):
    143-146

    A regulated charge pump (CP) with an extended range of load current is presented. A power-efficient adaptive feedback controller is adopted. Verified by a 0.18µm CMOS technology with a power supply of 3.3V, the measured output voltage of the CP is regulated above 5V when the load current is varied from 2.5mA to 50mA. The measured power efficiency spans from 81.7% at lighter load to 75.2% when load current is 50mA. The measured output ripples are small and below 24mV.

  • Real-Time Implementation of Lyapunov Stability Theory-Based Adaptive Filter on FPGA

    Engin Cemal MENGÜÇ  Nurettin ACIR  

     
    PAPER-Storage Technology

      Vol:
    E99-C No:1
      Page(s):
    129-137

    The Lyapunov stability theory-based adaptive filter (LST-AF) is a robust filtering algorithm which the tracking error quickly converges to zero asymptotically. Recently, the software module of the LST-AF algorithm is effectively used in engineering applications such as tracking, prediction, noise cancellation and system identification problems. Therefore, hardware implementation becomes necessary in many cases where real time procedure is needed. In this paper, an implementation of the LST-AF algorithm on Field Programmable Gate Arrays (FPGA) is realized for the first time to our knowledge. The proposed hardware implementation on FPGA is performed for two main benchmark problems; i) tracking of an artificial signal and a Henon chaotic signal, ii) estimation of filter parameters using a system identification model. Experimental results are comparatively presented to test accuracy, performance and logic occupation. The results show that our proposed hardware implementation not only conserves the capabilities of software versions of the LST-AF algorithm but also achieves a better performance than them.

  • Method of Audio Watermarking Based on Adaptive Phase Modulation

    Nhut Minh NGO  Masashi UNOKI  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    92-101

    This paper proposes a method of watermarking for digital audio signals based on adaptive phase modulation. Audio signals are usually non-stationary, i.e., their own characteristics are time-variant. The features for watermarking are usually not selected by combining the principle of variability, which affects the performance of the whole watermarking system. The proposed method embeds a watermark into an audio signal by adaptively modulating its phase with the watermark using IIR all-pass filters. The frequency location of the pole-zero of an IIR all-pass filter that characterizes the transfer function of the filter is adapted on the basis of signal power distribution on sub-bands in a magnitude spectrum domain. The pole-zero locations are adapted so that the phase modulation produces slight distortion in watermarked signals to achieve the best sound quality. The experimental results show that the proposed method could embed inaudible watermarks into various kinds of audio signals and correctly detect watermarks without the aid of original signals. A reasonable trade-off between inaudibility and robustness could be obtained by balancing the phase modulation scheme. The proposed method can embed a watermark into audio signals up to 100 bits per second with 99% accuracy and 6 bits per second with 94.3% accuracy in the cases of no attack and attacks, respectively.

  • Situation-Adaptive Detection Algorithm for Efficient MIMO-OFDM System

    Chang-Bin HA  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:1
      Page(s):
    417-422

    This letter proposes a situation-adaptive detection algorithm for the improved efficiency of the detection performance and complexity in the MIMO-OFDM system. The proposed algorithm adaptively uses the QRD-M, DFE, and iterative detection scheme in according to the detection environment. Especially, the proposed algorithm effectively reduces the occurrence probability of error in the successive interference cancellation procedure by the unit of the spatial stream. The simulations demonstrate that the adaptive detection method using the proposed algorithm provides a better trade-off between detection performance and complexity in the MIMO-OFDM system.

  • Improvement of Colorization-Based Coding Using Optimization by Novel Colorization Matrix Construction and Adaptive Color Conversion

    Kazu MISHIBA  Takeshi YOSHITOME  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/07/31
      Vol:
    E98-D No:11
      Page(s):
    1943-1949

    This study improves the compression efficiency of Lee's colorization-based coding framework by introducing a novel colorization matrix construction and an adaptive color conversion. Colorization-based coding methods reconstruct color components in the decoder by colorization, which adds color to a base component (a grayscale image) using scant color information. The colorization process can be expressed as a linear combination of a few column vectors of a colorization matrix. Thus it is important for colorization-based coding to make a colorization matrix whose column vectors effectively approximate color components. To make a colorization matrix, Lee's colorization-based coding framework first obtains a base and color components by RGB-YCbCr color conversion, and then performs a segmentation method on the base component. Finally, the entries of a colorization matrix are created using the segmentation results. To improve compression efficiency on this framework, we construct a colorization matrix based on a correlation of base-color components. Furthermore, we embed an edge-preserving smoothing filtering process into the colorization matrix to reduce artifacts. To achieve more improvement, our method uses adaptive color conversion instead of RGB-YCbCr color conversion. Our proposed color conversion maximizes the sum of the local variance of a base component, which resulted in increment of the difference of intensities at region boundaries. Since segmentation methods partition images based on the difference, our adaptive color conversion leads to better segmentation results. Experiments showed that our method has higher compression efficiency compared with the conventional method.

  • Robust Subband Adaptive Filtering against Impulsive Noise

    Young-Seok CHOI  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/06/26
      Vol:
    E98-D No:10
      Page(s):
    1879-1883

    In this letter, a new subband adaptive filter (SAF) which is robust against impulsive noise in system identification is presented. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion to impulsive noise, the robust SAF (R-SAF) comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to robustness against impulsive noise and the capable convergence performance. Simulation results clearly demonstrate that the proposal, R-SAF, outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.

  • A Modified AdaBoost Algorithm with New Discrimination Features for High-Resolution SAR Targets Recognition

    Kun CHEN  Yuehua LI  Xingjian XU  Yuanjiang LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/07/21
      Vol:
    E98-D No:10
      Page(s):
    1871-1874

    In this paper, we first propose ten new discrimination features of SAR images in the moving and stationary target acquisition and recognition (MSTAR) database. The Ada_MCBoost algorithm is then proposed to classify multiclass SAR targets. In the new algorithm, we introduce a novel large-margin loss function to design a multiclass classifier directly instead of decomposing the multiclass problem into a set of binary ones through the error-correcting output codes (ECOC) method. Finally, experiments show that the new features are helpful for SAR targets discrimination; the new algorithm had better recognition performance than three other contrast methods.

  • Adaptive Multi-Rate Designs and Analysis for Hybrid FSO/RF Systems over Fading Channels

    Vuong V. MAI  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1660-1671

    This paper proposes the concept of adaptive multi-rate (AMR), which jointly employs switching between two links and adaptive rate on each link, for hybrid free-space optical/radio-frequency (FSO/RF) systems. Moreover, we present the cross-layer design of AMR switching, which is based on both the physical and link layers with an automatic-repeat request (ARQ) scheme. We develop an analytical framework based on a Markov chain model for system performance analysis. System performance metrics, including frame-error rate, goodput and link switching probability, are analytically studied over fading channels. Numerical results quantitatively show how the proposal significantly outperforms conventional ones with physical layer-based design and/or fixed-rate switching operation.

  • Memoryless and Adaptive State Feedback Controller for a Chain of Integrators with an Unknown Delay in the Input

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1565-1568

    For systems with a delay in the input, the predictor method has been often used in state feedback controllers for system stabilization or regulation. In this letter, we show that for a chain of integrators with even an unknown input delay, a much simpler and memoryless controller is a good candidate for system regulation. With an adaptive gain-scaling factor, the proposed state feedback controller can deal with an unknown time-varying delay in the input. An example is given for illustration.

  • A New Adaptive Notch Filtering Algorithm Based on Normalized Lattice Structure with Improved Mean Update Term

    Shinichiro NAKAMURA  Shunsuke KOSHITA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1482-1493

    In this paper, we propose Affine Combination Lattice Algorithm (ACLA) as a new lattice-based adaptive notch filtering algorithm. The ACLA makes use of the affine combination of Regalia's Simplified Lattice Algorithm (SLA) and Lattice Gradient Algorithm (LGA). It is proved that the ACLA has faster convergence speed than the conventional lattice-based algorithms. We conduct this proof by means of theoretical analysis of the mean update term. Specifically, we show that the mean update term of the ACLA is always larger than that of the conventional algorithms. Simulation examples demonstrate the validity of this analytical result and the utility of the ACLA. In addition, we also derive the step-size bound for the ACLA. Furthermore, we show that this step-size bound is characterized by the gradient of the mean update term.

  • Throughput Maximization for Wireless Relay Systems with AMC and HARQ

    Wei-Shun LIAO  Po-Hung LIU  Hsuan-Jung SU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:7
      Page(s):
    1345-1356

    With the development of wireless technologies, wireless relay systems have become a popular topic. To design practical wireless relay systems, link adaptation is an important technique. Because there are both broadcast and multiple access channels in wireless relay systems, link adaptation is difficult to design and hence the optimal throughput is hard to achieve. In this study, a novel method is proposed to maximize the system throughput of wireless relay systems by utilizing the most popular link adaptation methods, adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ). The proposed method utilizes the characteristics and operations of AMC and HARQ to adaptively adjust the thresholds for selecting modulation and coding scheme (MCS) to be used. Thus the system can keep tracking the optimal values of the thresholds. Therefore, the system throughput can be maximized. We set up simulations for different relay environment settings, such as different relay HARQ protocols, placements, and multiplexing schemes, to verify the capability of the proposed method. The simulation results show that, compared to the existing method, the proposed method indeed improves system throughput under a variety of relay settings and can be easily applied to different system platforms.

  • A 5-GHz Band WLAN SiGe HBT Power Amplifier IC with Novel Adaptive-Linearizing CMOS Bias Circuit

    Xin YANG  Tsuyoshi SUGIURA  Norihisa OTANI  Tadamasa MURAKAMI  Eiichiro OTOBE  Toshihiko YOSHIMASU  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    651-658

    This paper presents a novel CMOS bias topology serving as not only a bias circuit but also an adaptive linearizer for SiGe HBT power amplifier (PA) IC. The novel bias circuit can well keep the base-to-emitter voltage (Vbe) of RF amplifying HBT constant and adaptively increase the base current (Ib) with the increase of the input power. Therefore, the gain compression and phase distortion performance of the PA is improved. A three-stage 5-GHz band PA IC with the novel bias circuit for WLAN applications is designed and fabricated in IBM 0.35µm SiGe BiCMOS technology. Under 54Mbps OFDM signal at 5.4GHz, the PA IC exhibits a measured small-signal gain of 29dB, an EVM of 0.9% at 17dBm output power and a DC current consumption of 284mA.

  • A Robust Interference Covariance Matrix Reconstruction Algorithm against Arbitrary Interference Steering Vector Mismatch

    Xiao Lei YUAN  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1553-1557

    We address a robust algorithm for the interference-plus-noise covariance matrix reconstruction (RA-INCMR) against random arbitrary steering vector mismatches (RASVMs) of the interferences, which lead to substantial degradation of the original INCMR beamformer performance. Firstly, using the worst-case performance optimization (WCPO) criteria, we model these RASVMs as uncertainty sets and then propose the RA-INCMR to obtain the robust INCM (RINCM) based on the Robust Capon Beamforming (RCB) algorithm. Finally, we substitute the RINCM back into the original WCPO beamformer problem for the sample covariance matrix to formulate the new RA-INCM-WCPO beamformer problem. Simulation results demonstrate that the performance of the proposed beamformer is much better than the original INCMR beamformer when there exist RASVMs, especially at low signal-to-noise ratio (SNR).

  • Error Evaluation of an F0-Adaptive Spectral Envelope Estimator in Robustness against the Additive Noise and F0 Error

    Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/04/02
      Vol:
    E98-D No:7
      Page(s):
    1405-1408

    This paper describes an evaluation of a temporally stable spectral envelope estimator proposed in our past research. The past research demonstrated that the proposed algorithm can synthesize speech that is as natural as the input speech. This paper focuses on an objective comparison, in which the proposed algorithm is compared with two modern estimation algorithms in terms of estimation performance and temporal stability. The results show that the proposed algorithm is superior to the others in both aspects.

  • A Bias-Free Adaptive Beamformer with GSC-APA

    Yun-Ki HAN  Jae-Woo LEE  Han-Sol LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1295-1299

    We propose a novel bias-free adaptive beamformer employing an affine projection algorithm with the optimal regularization parameter. The generalized sidelobe canceller affine projection algorithm suffers from a bias of a weight vectors under the condition of no reference signals for output of an array in the beamforming application. First, we analyze the bias in the algorithm and prove that the bias can be eliminated through a large regularization parameter. However, this causes slow convergence at the initial state, so the regularization parameter should be controlled. Through the optimization of the regularization parameter, the proposed method achieves fast convergence without the bias at the steady-state. Experimental results show that the proposed beamformer not only removes the bias but also achieves both fast convergence and high steady-state output signal-to-interference-plus-noise ratio.

  • Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing

    Kazuki MARUTA  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1050-1057

    This paper proposes a novel blind adaptive array scheme with subcarrier transmission power assignment (STPA) for spectrum superposing in cognitive radio networks. The Eigenvector Beamspace Adaptive Array (EBAA) is known to be one of the blind adaptive array algorithms that can suppress inter-system interference without any channel state information (CSI). However, EBAA has difficulty in suppressing interference signals whose Signal to Interference power Ratio (SIR) values at the receiver are around 0dB. With the proposed scheme, the ST intentionally provides a level difference between subcarriers. At the receiver side, the 1st eigenvector of EBAA is applied to the received signals of the subcarrier assigned higher power and the 2nd eigenvector is applied to those assigned lower power. In order to improve interference suppression performance, we incorporate Beamspace Constant Modulus Algorithm (BSCMA) into EBAA (E-BSCMA). Additionally, STPA is effective in reducing the interference experienced by the primary system. Computer simulation results show that the proposed scheme can suppress interference signals received with SIR values of around 0dB while improving operational SIR for the primary system. It can enhance the co-existing region of 2 systems that share a spectrum.

  • Performance Analysis and Optimum Resource Allocation in Mobile Multihop Relay System

    Taejoon KIM  Seong Gon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1078-1085

    This paper analyzes the performance of a mobile multihop relay (MMR) system which uses intermediate mobile relay stations (RSs) to increase service coverage area and capacity of a communication system. An analytical framework for an MMR system is introduced, and a scheme for allocating the optimum radio resources to an MMR system is presented. It is very challenging to develop an analytical framework for an MMR system because more than two wireless links should be considered in analyzing the performance of such a system. Here, the joint effect of a finite queue length and an adaptive modulation and coding (AMC) scheme in both a base station (BS) and an RS are considered. The traffic characteristics from BS to RS are analyzed, and a three-dimensional finite-state Markov chain (FSMC) is built for the RS which considers incoming traffic from the BS as well. The RS packet loss rate and the RS average throughput are also derived. Moreover, maximum throughput is achieved by optimizing the amount of radio resources to be allocated to the wireless link between a BS and an RS.

  • Performance Analysis of an LMS Based Adaptive Feedback Canceller for On-Channel Repeaters

    Jihoon CHOI  Young-Ho JUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    908-916

    An on-channel repeater (OCR) performing simultaneous reception and transmission at the same frequency is beneficial to improve spectral efficiency and coverage. In an OCR, it is important to cancel the feedback interference caused by imperfect isolation between the transmit and receive antennas, and least mean square (LMS) based adaptive filters are commonly used for this purpose. In this paper, we analyze the performance of the LMS based adaptive feedback canceller in terms of its transient behavior and the steady-state mean square error (MSE). Through a theoretical analysis, we derive iterative equations to compute transient MSEs and provide a procedure to simply evaluate steady-state MSEs for the adaptive feedback canceller. Simulation results performed to verify the theoretical MSEs show good agreement between the proposed theoretical analysis and the empirical results.

  • Numerical Implementation of Generalized Monopulse Estimation with Measured Subarray Patterns

    EunHee KIM  Dong-Gyu KIM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:4
      Page(s):
    340-348

    Monopulse is a classical technique for radar angle estimation and still adopted for fast angle estimation in phased array antenna. The classical formula can be applied to a 2-dimentional phased array antenna if two conditions---the unbiasedness and the independence of the azimuth and the elevation estimate---are satisfied. However, if the sum and difference beams are adapted to suppress the interference under jamming condition, they can be severely distorted. Thus the difference beams become highly correlated and violate the conditions. In this paper, we show the numerical implementation of the generalized monopulse estimation using the distorted and correlated beams, especially for a subarray configured antenna. Because we use the data from the measured subarray patterns rather than the mathematical model, this numerical method can be easily implemented for the complex array configuration and gives good performance for the uncertainty of the real system.

  • Generic Fully Simulatable Adaptive Oblivious Transfer

    Kaoru KUROSAWA  Ryo NOJIMA  Le Trieu PHONG  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    232-245

    We aim at constructing adaptive oblivious transfer protocols, enjoying fully simulatable security, from various well-known assumptions such as DDH, d-Linear, QR, and DCR. To this end, we present two generic constructions of adaptive OT, one of which utilizes verifiable shuffles together with threshold decryption schemes, while the other uses permutation networks together with what we call loosely-homomorphic key encapsulation schemes. The constructions follow a novel designing approach called “blind permutation”, which completely differs from existing ones. We then show that specific choices of the building blocks lead to concrete adaptive OT protocols with fully simulatable security in the standard model under the targeted assumptions. Our generic methods can be extended to build universally composable (UC) secure OT protocols, with a loss in efficiency.

181-200hit(1138hit)