Sathaporn PROMWONG Pichaya SUPANAKOON Jun-ichi TAKADA
A waveform of an ultra wideband impulse radio (UWB-IR) system can be extremely distorted through a channel even for free-space transmission because of antenna dispersion. This highly degrades the link budget performance. Therefore, the understand of antenna characteristics, which effects on waveform distortion, is necessary. This paper studies the waveform distortion due to antenna in free space transmission in UWB-IR system. The link budget is usually evaluated by using the Friis' transmission formula. However, it is not directly applicable to the UWB-IR transmission system. The link budget evaluation formula attended from conventional Friis' transmission formula that takes into account the transmitted waveform, its distortion due to the antennas, the channel and the correlation receiver is proposed. Since the antenna is significant pulse-shaping filters in UWB-IR system, the example kind of the log-periodic dipole antenna (LPDA) is experimentally examined, especially focused on the effect of the template waveforms.
Yen-Nien WANG Yih-Chien CHEN Kai-Hao CHEN
The hybrid antenna consisted of cylindrical dielectric resonator and rectangular slot was implemented. The hybrid antenna resonated at two different frequencies. The lower resonant frequency was associated with the rectangular slot while the higher resonant frequency was associated with the cylindrical dielectric resonator. Parametric investigation was carried out using simulation software. The proposed hybrid antenna had good agreement between the simulation and measurement results. A 24% bandwidth (return loss < 10 dB) of 2.30 GHz, and a 18% bandwidth (return loss < 10 dB) of 5.46 GHz was implemented successfully for application in ISM and UNII band.
Mohammad Tariqul ISLAM Ahmed Toaha MOBASHSHER Norbahiah MISRAN
In this paper, a novel feeding technique is proposed to feed a printed rectangular ring patch antenna that attains high gain in two bands simultaneously. The prototype antenna exhibits good impedance bandwidths satisfying ISM 2.45/5.8 GHz achieving maximum gain of 9.56 and 10.17 dBi, respectively, with a stable radiation pattern.
Wei FENG Yanmin WANG Yunzhou LI Shidong ZHOU Jing WANG
In this letter, we address the problem of downlink power allocation for the generalized distributed antenna system (DAS) with cooperative clusters. Considering practical applications, we assume that only the large-scale channel state information is available at the transmitter. The power allocation scheme is investigated with the target of ergodic achievable sum rate maximization. Based on some approximations and the Rayleigh Quotient Theory, the simple selective power allocation scheme is derived for the low SNR scenario and the high SNR scenario, respectively. The methods are applicable in practice due to their low complexity.
We describe a user scheduling scheme suitable for zero-forcing beamforming (ZFBF) downlink multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency-division multiplexing (OFDM) transmissions in time-division-duplex distributed antenna systems. This user scheduling scheme consists of inter-cell-interference mitigation scheduling by using fractional frequency reuse, proportional fair scheduling in the OFDM frequency domain, and high-capacity ZFBF-MU-MIMO scheduling by using zero-forcing with selection (ZFS). Simulation results demonstrate in a severe user-distribution condition that includes cell-edge users that the proposed user scheduling scheme achieves high average cell throughputs close to that provided by only ZFS and that it also achieves almost the same degree of user fairness as round-robin user scheduling.
In the conventional multi-input multi-output (MIMO) communication systems, most of the antenna selection methods considered are suitable only for spatially separated uni-polarized system under Rayleigh fading channel in non-line of sight (NLOS) condition. There have a few antenna selection schemes for the cross-polarized system in LOS condition and Ricean fading channel, and no antenna selection scheme for the MIMO channel with both LOS and NLOS. In the practical MIMO channel case, influence of LOS and NLOS conditions in the channel can vary from time to time according to the channel parameters and user movement in the system. Based on these influences and channel condition, uni-polarized system may outperform a cross-polarized. Thus, we should consider this kind of practical MIMO channel environment when developing the antenna selection scheme. Moreover, no research work has been done on reducing the complexity of antenna selection for this kind of practical MIMO channel environment. In this paper, reduced complexity in antenna selection is proposed to give the higher throughput in the practical MIMO channel environment. In the proposed scheme, suitable polarized antennas are selected based on the calculation of singular value decomposition (SVD) of channel matrix and then adaptive bit loading is applied. Simulation results show that throughput of the system can be improved under the constraint of target BER and total transmit power of the MIMO system.
Eunchul YOON Joon-Tae KIM Taewon HWANG
In a closed-loop scenario, the performance of transmit-diversity schemes for a multiple antenna system depends on the reliability of the channel state information (CSI). However, estimating the reliability of the instantaneous CSI at the transmitter is a challenging task. In this paper, we propose a robust transmit-diversity scheme for the case when the instantaneous CSI available at the transmitter is imperfect and its reliability is unknown to the transmitter. We show by simulation that our proposed scheme is efficient when the CSI reliability varies arbitrarily in every channel realization.
Katsumi FUJII Yukio YAMANAKA Kunimasa KOIKE Akira SUGIURA
The use of the in-phase synthetic method is proposed for antenna calibration using the three-antenna method (TAM) in order to make the TAM applicable even in a semi-anechoic chamber (SAC) or on an open-area test site. Suitable antenna arrangements are theoretically investigated for this improved calibration method. Experimental analyses demonstrate that the in-phase synthetic method can remarkably reduce unwanted effects of the ground-reflected wave. Therefore, even on a metal ground plane, the proposed TAM with the in-phase synthetic method can yield an accurate actual gain of a double ridged guide antenna at frequencies from 4 GHz to 14 GHz with differences of +0.16/-0.37 dB from the results of the conventional TAM performed in an fully anechoic room (FAR).
Dong-Sik WOO Young-Gon KIM Young-Ki CHO Kang Wook KIM
A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58 GHz with the antenna gain of 12 to 14 dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.
Uisheon KIM Gyubong JUNG Jaehoon CHOI
This paper proposes a printed tag antenna for the universal ultra-high frequency (UHF) radio frequency identification (RFID) band (860-960 MHz) using the R2R process. To widen impedance bandwidth, a π-shaped matching network is suggested. The overall dimension of the proposed tag antenna is 83.4 mm 30.2 mm and it has a gain of over 1 dBi for the entire UHF RFID band. The performances of the proposed tag antenna, printed with conductivity silver ink using an R2R process, are compared with those of a copper antenna.
Mio NAGATOSHI Shingo TANAKA Satoru HORIUCHI Hisashi MORISHITA
It has been reported that by adding two folded elements, bow-tie antenna can be miniaturized, but the antenna has VSWR degradation problem. In this paper, the details of the VSWR degradation are investigated and the physical mechanism of the degradation is clarified. The best position for folded element is also shown. Moreover, the bow-tie antenna is bent in half in order to realize more size reduction. When the two folded elements are added to the half bent bow-tie antenna, the lowest operation frequency goes down and the proposed antenna can be more downsized than the previous proposed antenna. The gain is slightly lower than that of the previous model, however, the antenna area is reduced from 31%, which is the antenna area ratio of privious proposed antenna and conventional bow-tie antenna, to 19%. The bandwidth of 92% is obtained for VSWR≤2.
Sen FENG Eisuke NISHIYAMA Masayoshi AIKAWA
A novel broad-band ring-slot array antenna for simultaneous use of orthogonal polarizations is presented in this paper. In this antenna, the broad-band performance is obtained by integrating a 22 ring-slot array antenna and a broad-band π/2 hybrid circuit. The simultaneous use of the right-hand circular polarization (RHCP) and the left-hand circular polarization (LHCP) is achieved using orthogonal feed circuits on three layers. The both-sided MIC technology is effectively employed in forming this type of slot array antenna. Experimental results show that the proposed antenna has good circular polarization characteristics for both the LHCP and the RHCP. The measured impedance-bandwidth of return loss better than -10 dB are about 47% both for the LHCP and the RHCP. The 3 dB axial ratio bandwidths are 25% (RHCP) and 29% (LHCP). The isolation between the two input ports is better than -35 dB at center frequency of 7.5 GHz.
Hiroki WAKATSUCHI Stephen GREEDY John PAUL Christos CHRISTOPOULOS
This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.
This paper proposes and verifies a specific absorption rate (SAR) measurement procedure for multi-antenna transmitters that requires measurement of two-dimensional electric field distributions for the number of antennas and calculation in order to obtain the three-dimensional SAR distributions for arbitrary weighting coefficients of the antennas prior to determining the average SAR. The proposed procedure is verified based on Finite-Difference Time-Domain (FDTD) calculation and measurement using electro-optic (EO) probes. For two reference dipoles, the differences in the 10 g SAR obtained based on the proposed procedure compared numerically and experimentally to that based on the original calculated three-dimensional SAR distribution are at most 4.8% and 3.6%, respectively, at 1950 MHz. At 3500 MHz, this difference is at most 5.2% in the numerical verification.
Numerical simulations of the gain and phase center measurements for a pyramidal horn antenna are carried out. The electromagnetic simulation is based on the finite integration method. The gain of horn antennas varies with the distance between their apertures, even if the antennas satisfy the far-field criterion. This gain variation is shown to correspond with the ratio of the distance between the apertures to the distance between the phase centers. The experimental results also demonstrate the efficacy of considering the location of the phase center for antenna calibration.
Koh HASHIMOTO Jiro HIROKAWA Makoto ANDO
A post-wall center-feed waveguide consisting of T-junctions is proposed for reducing the slot-free area of a parallel plate slot array antenna. The width of the slot-free area is reduced from 2.6 λ0 to 2.1 λ0. A sidelobe level in the E-plane is expected to be suppressed lower than that of the conventional center-feed antenna using cross-junctions. The method of moments with solid-wall replacement designs initially the T-junctions and HFSS including the post surfaces modifies only the reflection cancelling post. We have designed and fabricated a 61.25 GHz model antenna with uniform aperture illumination. The sidelobe level in the E-plane is suppressed to -9.5 dB while that of a conventional cross-junction type is -7.8 dB. Also, we suppress it to -13.8 dB by introducing a -8.3 dB amplitude tapered distribution in the array of the radiation slot pairs.
Koh HASHIMOTO Jiro HIROKAWA Makoto ANDO
A novel analysis model for post-wall waveguide T-junctions is proposed. Equivalent solid-walls for the post-walls to have equal guided wavelength are corrected in the analysis model so that the wall thickness for the coupling windows is set to the difference in the width between the post-wall and the solid-wall waveguides. The accuracy of the proposed model is confirmed by comparing it to an HFSS analysis for the real structure of the post-wall waveguide T-junction including the post surfaces. 61.25 GHz model antennas are fabricated for experimental verification. The reflection of the antenna designed by the modified analysis model is suppressed to below -15 dB over a 5.6 GHz bandwidth, while that in the antenna designed by the conventional model is larger than -15 dB around the design frequency.
Satoshi YAMAGUCHI Hiroaki MIYASHITA Toru TAKAHASHI Masataka OTSUKA Yoshihiko KONISHI
Owing to their ultra-wideband characteristics, tapered slot antennas (TSAs) are used as element antennas in wideband phased arrays. However, when the size of a TSA is reduced in order to prevent the generation of a grating lobe during wide-angle beam scanning, the original ultra-wideband characteristics are degraded because of increased reflections from the ends of the tapered slot aperture. To overcome this difficulty, we propose a new antenna structure in which parallel-plate waveguides are added to the TSA. The advantage of this new structure is that the reflection characteristics of individual antenna elements are not degraded even if the width of the antenna aperture is very small, i.e., approximately one-half the wavelength of the highest operating frequency. In this study, we propose a procedure for designing the new antenna through numerical simulations by using the FDTD method. In addition, we verify the performance of the antenna array by experiments.
Ming DING Shi LIU Hanwen LUO Wuyang JIANG Jing LV
In this letter, we propose a novel antenna selection algorithm for amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay systems with Zero-Forcing (ZF) processing applied both at the source node and at the destination node. We obtain the optimum antenna selection criterion by deriving an iterative closed-form expression for capacity maximization.
For automatic repeat request (ARQ)-aided TSTD (Time Switched Transmit Diversity) system, a receiver sends the acknowledgement signal (ACK or NACK) to a transmitter in order to predict the condition of the channel. In this paper, two antenna switching schemes, in which the NACK trigger the transmit antenna switching in the proposed antenna switching patterns, are proposed for the TSTD with the ARQ in WCDMA LCR-TDD systems. In addition, the system performances are investigated. Simulation results demonstrate that the performances of the TSTD systems can be improved by applying the ARQ scheme. Furthermore, the performances of ARQ-aided TSTD systems may be significantly improved by applying the proposed antenna switching schemes, especially when the mobile's speed is low.