The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] antenna(1134hit)

521-540hit(1134hit)

  • An Analysis of Antenna Integrated THz Oscillator Using a Negative Differential Resistance Transistor

    Katsumi FURUYA  Takeyoshi SUGAYA  Kazuhiro KOMORI  Masahiro ASADA  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1800-1805

    As THz wave has the advantages of enough resolution and penetration to materials, it has been examined to be used for the imaging system. The propagation distance of THz wave is limited to be short. That is also the advantage for application to the indoor wireless communication etc. For the achievement of the ultra-high frequency oscillator (and concurrently transmitter) device, the properties of small, electronic excitation, the antenna constructed and being on the wafer are important. For the purpose, the Negative differential resistance Dual channel transistor (NDR-DCT) proposed by AIST is utilized. In this paper, as an initial theoretical analysis, we simulated the oscillation frequency of this device at about 100 GHz-1THz within the Terahertz band on which the above applications was expected. The equivalent circuit model of NDR-DCT was shown based on the analogy with the resonant tunnelling diode (RTDs), and the antenna as the resonance circuit part was designed by the numerical analysis. The possibility of the THz oscillation of this device was confirmed. The slit reflector that we proposed can realize the slot antenna on the device effectively and is suitable for three terminal structure semiconductor. its manufacturing is relatively easy.

  • On-Body Antennas and Propagation: Recent Development Open Access

    Yang HAO  Peter S. HALL  

     
    INVITED PAPER

      Vol:
    E91-B No:6
      Page(s):
    1682-1688

    The paper reviews recent advances in on-body antennas and propagation under a joint UK EPSRC research project between Queen Mary College, University of London and University of Birmingham. The study of on-body radio propagation has been extended by using various small antennas. The effect of antenna size, gain and radiation patterns on on-body channel characteristics has been studied. A practical wearable sensor antenna design is presented and it is demonstrated that a global simulation including sensor environment and human body is needed for accurate antenna characterisation. A 3D animation design software, POSER 6 has been used together with XFDTD to predict the on-body path loss variation due to changes in human postures and human motion. Finally, a preliminary study on the feasibility of a diversity scheme in an on-body environment has been carried out.

  • Technique for Antenna Calibration in Random Electric Fields

    Katsushige HARIMA  

     
    LETTER-Measurements

      Vol:
    E91-B No:6
      Page(s):
    1838-1841

    A novel technique for calibrating antenna gain in random electric fields is presented. Our technique exploits the statistical characteristics of complex electric fields in multipath environments that change with time. A reverberation chamber, consisting of a shielded enclosure equipped with mechanical stirrers, was used to determine this technique's validity experimentally. Such chambers can create, using rotating stirrers, multipath environments that change with time. A comparison of the results obtained in a reverberation chamber and those obtained by the conventional method in an anechoic chamber demonstrates the efficacy of this technique.

  • A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    Kei TAKAYAMA  Yukihiro KAMIYA  Takeo FUJII  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1906-1913

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  • Improving the Capacity of Limited Feedback Beamforming in Distributed MIMO Systems

    Erlin ZENG  Shihua ZHU  Zhimeng ZHONG  Zhenjie FENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2063-2066

    In this letter, we analyze the performance of limited feedback beamforming in a distributed antenna system. We propose a novel codebook design scheme to maximize a lower bound of the averaged effective signal-to-noise ratio (SNR), which is a function of the power of the signal and noise, the number of antennas, and the number of total feedback bits for characterizing the quantized channel vector. Simulations verify that the proposed scheme can provide effective capacity improvement.

  • Capacity Based Fast Receive Antenna Subset Selection in MIMO System

    Wei GUAN  Hanwen LUO  Haibin ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2049-2052

    In this letter, we develop a two-step receive antenna selection method to maximize channel capacity. Different from previous work, we first derive a lower bound on capacity based on Hadamard inequality and arithmetic-geometric mean inequality, which is then used to iteratively drop the worst-performing antennas according to their measure. The recursive nature of this method helps to largely reduce the computational complexity.

  • Ka-Band Triangular Patch Antenna on Micromachined High-k Substrate

    Preeti SHARMA  Shiban K. KOUL  Sudhir CHANDRA  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:6
      Page(s):
    2073-2076

    This letter reports a high-performance Ka-band equilateral triangular microstrip patch (ETMP) antenna suspended on a thin dielectric membrane. The membrane is released using a silicon bulk-micromachining technique. A set of closed-form expressions to calculate the resonant frequency of the proposed antenna on the micromachined substrate is also presented. The measured performance of the antenna structure is verified using the finite element method (FEM) based Agilent High Frequency Structure Simulator (version 5.5). The fabricated antenna exhibited a wide -10 dB return loss bandwidth of 1.2 GHz at 35.4 GHz. The measured antenna cross-polarization level is less than -15 dB in both the E- and H-planes.

  • Antennas for Ubiquitous Sensor Network Open Access

    Kihun CHANG  Young Joong YOON  

     
    INVITED PAPER

      Vol:
    E91-B No:6
      Page(s):
    1697-1704

    Recent advancements in the ubiquitous sensor network field have brought considerable feasibility to the realization of a ubiquitous society. A ubiquitous sensor network will enable the cooperative gathering of environmental information or the detection of special events through a large number of spatially distributed sensor nodes. Thus far, radio frequency identification (RFID) as an application for realizing the ubiquitous environment has mainly been developed for public and industrial systems. To this end, the most existing applications have demanded low-end antennas. In recent years, interests of ubiquitous sensor network have been broadened to medical body area networks (BAN), wireless personal area networks (WPAN), along with ubiquitous smart worlds. This increasing attention toward in ubiquitous sensor network has great implications for antennas. The design of functional antennas has received much attention because they can provide various kinds of properties and operation modes. These high-end antennas have some functions besides radiation. Furthermore, smart sensor nodes equipped with cooperated high-end antennas would allow them to respond adaptively to environmental events. Therefore, some design approaches of functional antennas with sensing and reconfigurability as high-end solution for smart sensor node, as well as low-end antennas for mobile RFID (mRFID) and SAW transponder are presented in this paper.

  • Antenna Selection Method for Terminal Antennas Employing Orthogonal Polarizations and Patterns in Outdoor Multiuser MIMO System

    Naoki HONMA  Riichi KUDO  Kentaro NISHIMORI  Yasushi TAKATORI  Atsushi OHTA  Shuji KUBOTA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1752-1759

    This paper proposes an antenna selection method for terminal antennas employing orthogonal polarizations and patterns, which is suitable for outdoor MultiUser Multi-Input Multi-Output (MU-MIMO) systems. In addition, this paper introduces and verifies two other antenna selection methods for comparison. For the sake of simplicity, three orthogonal dipoles are considered, and this antenna configuration using the proposed selection method is compared to an antenna configuration with three vertical or horizontal dipoles. In the proposed antenna selection method, we always choose the vertical dipole, and choose one of two horizontal dipoles, which are orthogonal to each other, based on the Signal-to-Noise Ratio (SNR). We measured the MU-MIMO transmission properties and found that the proposed selection method employing the antenna with orthogonal polarizations and patterns can offer fairly high channel capacity in a multiuser scenario.

  • Throughput Performance Improvement Using Complexity-Reduced User Scheduling Algorithm in Uplink Multi-User MIMO/SDM Systems

    Manabu MIKAMI  Teruya FUJII  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1724-1733

    Multi-user MIMO (Multiple Input Multiple Output) systems, in which multiple Mobile Stations (MSs) equipped with multiple antennas simultaneously communicate with a Base Station (BS) equipped with multiple antennas, at the same frequency, are attracting attention because of their potential for improved transmission performance in wireless communications. In the uplink of Space Division Multiplexing based multi-user MIMO (multi-user MIMO/SDM) systems that do not require full Channel State Information (CSI) at the transmitters, selecting active MS antennas, which corresponds to scheduling transmit antennas, is an effective technique. The Full search Selection Algorithm based on exhaustive search (FSA) has been studied as an optimal active MS antenna selection algorithm for multi-user MIMO systems. Unfortunately, FSA suffers from extreme computational complexity given large numbers of MSs. To solve this problem, this paper introduces the Gram-Schmidt orthogonalization based Selection Algorithm (GSSA) to uplink multi-user MIMO/SDM systems. GSSA is a suboptimal active MS antenna selection algorithm that offers lower computational complexity than the optimal algorithm. This paper evaluates the transmission performance improvement of GSSA in uplink multi-user MIMO/SDM systems under realistic propagation conditions such as spatially correlated BS antennas and clarifies the effectiveness of GSSA.

  • Holistic Design in mm-Wave Silicon ICs

    Ali HAJIMIRI  

     
    INVITED PAPER

      Vol:
    E91-C No:6
      Page(s):
    817-828

    Millimeter-waves integrated circuits offer a unique opportunity for a holistic design approach encompassing RF, analog, and digital, as well as radiation and electromagnetics. The ability to deal with the complete system covering a broad range from the digital circuitry to on-chip antennas and everything in between offers unparalleled opportunities for completely new architectures and topologies, which were previously impossible due the traditional partitioning of various blocks in conventional design. This can open a plethora of new architectural and system level innovation within the integrated circuit platform. This paper reviews some of the challenges and opportunities for mm-wave ICs and presents several solutions to them.

  • A Dual-Band Dual-Feed Switched-Beam Patch Antenna for WLAN Application

    Jukkrit TAGAPANIJ  Pobsook SOOKSUMRARN  Tanawut TANTISOPHARAK  Suwan JANIN  Monai KRAIRIKSH  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1791-1799

    Due to the demand of dual-band modern wireless communications, this paper presents a dual-band patch antenna for IEEE802.11 a and g wireless local area network (WLAN) system. The antenna has bidirectional patterns that can be switched by an RF switch to select the feeding probe positions. The 2.4 GHz and 5.2 GHz patches are stacked on a ground plane and are matched to the RF switch by open stubs. Analysis and design are illustrated and throughput improvement is demonstrated in an indoor environment.

  • Simulation-Based Performance Evaluation of Adaptive Scan for Spaceborne Rain Radar

    Toyoshi SHIMOMAI  Yusuke YOKOYAMA  Tosihiaki KOZU  Hiroshi HANADO  

     
    PAPER-Sensing

      Vol:
    E91-B No:6
      Page(s):
    2020-2024

    The performance of the adaptive scan for spaceborne rain radar, which uses a quick scan for rain search followed by a normal or concentrated scan only for rainy areas, are studied through a simulation using TRMM (Tropical Rainfall Measuring Mission) Precipitation Radar (PR) data. Trade-off studies are performed to find an optimum quick-scan and rain search method to minimize rain missing and false alarm of rain area. Using the optimum method thus determined, consecutive 8-day TRMM PR data are used to statistically evaluate the performance of the adaptive scan in terms of sensitivity improvement and power consumption saving. It is shown that more than 3-dB improvement in effective signal-to-noise ratio (SNe) can be achieved for 40% of the total observations. Alternatively, about 26% power saving can be achieved if the SNe is kept the same.

  • A Method to Transform Rainfall Rate to Rain Attenuation and Its Application to 21 GHz Band Satellite Broadcasting

    Susumu NAKAZAWA  Shoji TANAKA  Kazuyoshi SHOGEN  

     
    PAPER-Propagation

      Vol:
    E91-B No:6
      Page(s):
    1806-1811

    Satellite broadcasting in the 21-GHz band is expected to transmit large-capacity signals such as ultrahigh-definition TV. However, this band suffers from large amounts of rain attenuation. In this regard, we have been studying rain fading mitigation techniques, in which the radiation power is increased locally in the area of heavy rainfall. To design such a satellite broadcasting system, it is necessary to evaluate service availability when using the locally increased beam technique. The rain attenuation data should be derived from the rainfall rate data. We developed a method to transform rainfall rate into rain attenuation in the 21 GHz band. Then, we performed a simulation that applied the method to the analysis of the service availability for an example phased array antenna configuration. The results confirmed the service availability increased with the locally increased beam technique.

  • Experimental Study on MUSIC-Based DOA Estimation by Using Universal Steering Vector

    Qiaowei YUAN  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1575-1580

    MUSIC-based estimation of direction of arrival (DOA) using universal steering vector (USV) is experimentally studied. A four-element array antenna and a four-channel receiver are employed for the experiment. In order to improve the accuracy of DOA estimation, USV which has already included the effect of mutual coupling between array elements and effect of array elements themselves is compensated to further include the electric delay and loss of four channels in the receiver. The compensated USV (C-USV) approach proposed in this paper does not need the time-consuming measurement of array element pattern because the compensating matrix for USV is obtained by measuring the S parameters between RF input ports of the feeding cables and IF output ports of the receiver. The experimental results of MUSIC-based DOA estimation show that C-USV approach is an accurate, effective and practical method for the MUSIC-based DOA estimation.

  • Assignment Schemes for Transmit Antennas in MIMO Systems

    Masoomeh TORABZADEH  Yusheng JI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1548-1556

    In multiple-input multiple-output (MIMO) cellular networks, certain schedulers have two independent phases: the first selects a group of users based on the scheduler criterion, and the second assigns the selected users to the transmit antennas by using an assignment scheme taking into consideration capacity maximization. Other schedulers directly select among the available channels between users and the base station in a centralized way. The schedulers of the first category can be implemented with lower complexity compared with the schedulers of the second category. For the first category, we propose three near-optimal assignment schemes with low complexities. We conducted a simulation in which the mobility of users was considered that demonstrated the superior performance of our assignment schemes. Furthermore, we analytically demonstrate their efficiency.

  • Antenna Selective Algebraic STBC Using Error Codebook on Correlated Fading Channels

    Rong RAN  JangHoon YANG  DongKu KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1653-1656

    In this letter, a simple but effective antenna selection algorithm for orthogonal space-time block codes with a linear complex precoder (OSTBC-LCP) is proposed and compared with two conventional algorithms in temporally and spatially correlated fading channels. The proposed algorithm, which minimizes pairwise error probability (MinPEP) with an error codebook (EC) constructed from the error vector quantization, is shown to provide nearly the same performance of MinPEP based on all possible error vectors, while keeping the complexity close to that of antenna selection algorithm based on maximum power criterion (Maxpower).

  • Slow-Wave Effect of Electronically-Controlled Composite Right/Left-Handed (CRLH) Transmission Line

    Sungjoon LIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1665-1668

    A dispersion diagram is useful in interpreting the characteristics of a periodic structure. In particular, the fast-wave region, where the wave is radiating, and the slow-wave region, where the wave is guided, can be determined from the dispersion diagram. An electronically-controlled composite right/left-handed (CRLH) transmission line (TL) was previously proposed and utilized as a leaky-wave (LW) antenna operating in the fast-wave region. However, since a guided-wave application operates in the slow-wave region, it is meaningful to study slow-wave effects of the proposed TL. In this paper, the dispersion diagram is used to investigate the slow-wave factor (SWF), which is necessary to understand the fast/slow-wave operations. Furthermore, the frequency characteristics are measured to find the cut-off frequencies in the LH and RH regions. Based on experimental results, it is observed at a fixed frequency, 2.6-GHz, that the phase of a proposed 6-cell structure can be changed by up to 280 in the LH slow-wave region.

  • A DOA-Based Adaptive Smart Antenna Processor for Cellular Mobile Systems

    Hyung-Rae PARK  Young-Ho YUN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1657-1660

    In this letter we propose an adaptive beamforming algorithm that efficiently suppresses interferences using a structured interference covariance matrix. The proposed algorithm provides high performance by exploiting angle diversity, especially in cellular mobile environments where the angular spread of a received signal is relatively small. We verify the superiority of the proposed algorithm to the well known linearly constrained minimum variance (LCMV) and reference signal-based algorithms.

  • Wideband Stacked Square Microstrip Antenna with Shorting Plates

    Takafumi FUJIMOTO  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1669-1672

    A stacked square microstrip antenna with shorting plates is proposed for wide band operation. The vswr 2 with gain at θ=0 0 dBi is achieved in the frequency range between the first and second resonant frequencies by loading the two shorting plates. The proposed antenna has bandwidth of approximately 60%.

521-540hit(1134hit)