The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] behavior analysis(11hit)

1-11hit
  • Device Type Classification Based on Two-Stage Traffic Behavior Analysis Open Access

    Chikako TAKASAKI  Tomohiro KORIKAWA  Kyota HATTORI  Hidenari OHWADA  

     
    PAPER

      Pubricized:
    2023/10/17
      Vol:
    E107-B No:1
      Page(s):
    117-125

    In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.

  • Kiite Cafe: A Web Service Enabling Users to Listen to the Same Song at the Same Moment While Reacting to the Song

    Kosetsu TSUKUDA  Keisuke ISHIDA  Masahiro HAMASAKI  Masataka GOTO  

     
    PAPER-Music Information Processing

      Pubricized:
    2023/07/28
      Vol:
    E106-D No:11
      Page(s):
    1906-1915

    This paper describes a public web service called Kiite Cafe that lets users get together virtually to listen to music. When users listen to music on Kiite Cafe, their experiences are enhanced by two architectures: (i) visualization of each user's reactions, and (ii) selection of songs from users' favorite songs. These architectures enable users to feel social connection with others and the joy of introducing others to their favorite songs as if they were together listening to music in person. In addition, the architectures provide three user experiences: (1) motivation to react to played songs, (2) the opportunity to listen to a diverse range of songs, and (3) the opportunity to contribute as a curator. By analyzing the behavior logs of 2,399 Kiite Cafe users over a year, we quantitatively show that these user experiences can generate various effects (e.g., users react to a more diverse range of songs on Kiite Cafe than when listening alone). We also discuss how our proposed architectures can enrich music listening experiences with others.

  • Why and How People View Lyrics While Listening to Music on a Smartphone

    Kosetsu TSUKUDA  Masahiro HAMASAKI  Masataka GOTO  

     
    PAPER-Music Information Processing

      Pubricized:
    2023/01/18
      Vol:
    E106-D No:4
      Page(s):
    556-564

    Why and how do people view lyrics? Although various lyrics-based music systems have been proposed, this fundamental question remains unexplored. Better understanding of lyrics viewing behavior would be beneficial for both researchers and music streaming platforms to improve their lyrics-based systems. Therefore, in this paper, we investigate why and how people view lyrics, especially when they listen to music on a smartphone. To answer “why,” we conduct a questionnaire-based online user survey involving 206 participants. To answer “how,” we analyze over 23 million lyrics request logs sent from the smartphone application of a music streaming service. Our analysis results suggest several reusable insights, including the following: (1) People have high demand for viewing lyrics to confirm what the artist sings, more deeply understand the lyrics, sing the song, and figure out the structure such as verse and chorus. (2) People like to view lyrics after returning home at night and before going to sleep rather than during the daytime. (3) People usually view the same lyrics repeatedly over time. Applying these insights, we also discuss application examples that could enable people to more actively view lyrics and listen to new songs, which would not only diversify and enrich people's music listening experiences but also be beneficial especially for music streaming platforms.

  • Social Behavior Analysis and Thai Mental Health Questionnaire (TMHQ) Optimization for Depression Detection System

    Konlakorn WONGAPTIKASEREE  Panida YOMABOOT  Kantinee KATCHAPAKIRIN  Yongyos KAEWPITAKKUN  

     
    PAPER

      Pubricized:
    2020/01/21
      Vol:
    E103-D No:4
      Page(s):
    771-778

    Depression is a major mental health problem in Thailand. The depression rates have been rapidly increasing. Over 1.17 million Thai people suffer from this mental illness. It is important that a reliable depression screening tool is made available so that depression could be early detected. Given Facebook is the most popular social network platform in Thailand, it could be a large-scale resource to develop a depression detection tool. This research employs techniques to develop a depression detection algorithm for the Thai language on Facebook where people use it as a tool for sharing opinions, feelings, and life events. To establish the reliable result, Thai Mental Health Questionnaire (TMHQ), a standardized psychological inventory that measures major mental health problems including depression. Depression scale of the TMHQ comprises of 20 items, is used as the baseline for concluding the result. Furthermore, this study also aims to do factor analysis and reduce the number of depression items. Data was collected from over 600 Facebook users. Descriptive statistics, Exploratory Factor Analysis, and Internal consistency were conducted. Results provide the optimized version of the TMHQ-depression that contain 9 items. The 9 items are categorized into four factors which are suicidal ideation, sleep problems, anhedonic, and guilty feelings. Internal consistency analysis shows that this short version of the TMHQ-depression has good to excellent reliability (Cronbach's alpha >.80). The findings suggest that this optimized TMHQ-depression questionnaire holds a good psychometric property and can be used for depression detection.

  • Retweeting Prediction Based on Social Hotspots and Dynamic Tensor Decomposition

    Qian LI  Xiaojuan LI  Bin WU  Yunpeng XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1380-1392

    In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.

  • Fraud Detection in Comparison-Shopping Services: Patterns and Anomalies in User Click Behaviors

    Sang-Chul LEE  Christos FALOUTSOS  Dong-Kyu CHAE  Sang-Wook KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/10
      Vol:
    E100-D No:10
      Page(s):
    2659-2663

    This paper deals with a novel, interesting problem of detecting frauds in comparison-shopping services (CSS). In CSS, there exist frauds who perform excessive clicks on a target item. They aim at making the item look very popular and subsequently ranked high in the search and recommendation results. As a result, frauds may distort the quality of recommendations and searches. We propose an approach of detecting such frauds by analyzing click behaviors of users in CSS. We evaluate the effectiveness of the proposed approach on a real-world clickstream dataset.

  • Enhancing Purchase Behavior Prediction with Temporally Popular Items

    Chen CHEN  Chunyan HOU  Jiakun XIAO  Yanlong WEN  Xiaojie YUAN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/05/30
      Vol:
    E100-D No:9
      Page(s):
    2237-2240

    In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use traditional features based on the statistics and temporal dynamics of items. Those features lead to the loss of detailed items' information. In this study, we propose a novel kind of features based on temporally popular items to improve the prediction. Experiments on the real-world dataset have demonstrated the effectiveness and the efficiency of our proposed method. Features based on temporally popular items are compared with traditional features which are associated with statistics, temporal dynamics and collaborative filter of items. We find that temporally popular items are an effective and irreplaceable supplement of traditional features. Our study shed light on the effectiveness of the combination of popularity and temporal dynamics of items which can widely used for a variety of recommendations in e-commerce sites.

  • Internet Data Center IP Identification and Connection Relationship Analysis Based on Traffic Connection Behavior Analysis

    Xuemeng ZHAI  Mingda WANG  Hangyu HU  Guangmin HU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    510-517

    Identifying IDC (Internet Data Center) IP addresses and analyzing the connection relationship of IDC could reflect the IDC network resource allocation and network layout which is helpful for IDC resource allocation optimization. Recent research mainly focuses on minimizing electricity consumption and optimizing network resource allocation based on IDC traffic behavior analysis. However, the lack of network-wide IP information from network operators has led to problems like management difficulties and unbalanced resource allocation of IDC, which are still unsolved today. In this paper, we propose a method for the IP identification and connection relationship analysis of IDC based on the flow connection behavior analysis. In our method, the frequent IP are extracted and aggregated in backbone communication network based on the traffic characteristics of IDC. After that, the connection graph of frequent IP (CGFIP) are built by analyzing the behavior of the users who visit the IDC servers, and IDC IP blocks are thus identified using CGFIP. Furthermore, the connection behavior characteristics of IDC are analyzed based on the connection graphs of IDC (CGIDC). Our findings show that the method can accurately identify the IDC IP addresses and is also capable of reflecting the relationships among IDCs effectively.

  • Improving Purchase Behavior Prediction with Most Popular Items

    Chen CHEN  Jiakun XIAO  Chunyan HOU  Xiaojie YUAN  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2016/11/07
      Vol:
    E100-D No:2
      Page(s):
    367-370

    Purchase behavior prediction is one of the most important issues to promote both e-commerce companies' sales and the consumers' satisfaction. The prediction usually uses features based on the statistics of items. This kind of features can lead to the loss of detailed information of items. While all items are included, a large number of features has the negative impact on the efficiency of learning the predictive model. In this study, we propose to use the most popular items for improving the prediction. Experiments on the real-world dataset have demonstrated the effectiveness and the efficiency of our proposed method. We also analyze the reason for the performance of the most popular items. In addition, our work also reveals if interactions among most popular items are taken into account, the further significant improvement can be achieved. One possible explanation is that online retailers usually use a variety of sales promotion methods and the interactions can help to predict the purchase behavior.

  • Predicting Political Orientation of News Articles Based on User Behavior Analysis in Social Network Open Access

    Jun-Gil KIM  Kyung-Soon LEE  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    685-693

    News articles usually represent a biased viewpoint on contentious issues, potentially causing social problems. To mitigate this media bias, we propose a novel framework for predicting orientation of a news article by analyzing social user behaviors in Twitter. Highly active users tend to have consistent behavior patterns in social network by retweeting behavior among users with the same viewpoints for contentious issues. The bias ratio of highly active users is measured to predict orientation of users. Then political orientation of a news article is predicted based on the bias ratio of users, mutual retweeting and opinion analysis of tweet documents. The analysis of user behavior shows that users with the value of 1 in bias ratio are 88.82%. It indicates that most of users have distinctive orientation. Our prediction method based on orientation of users achieved 88.6% performance in accuracy. Experimental results show significant improvements over the SVM classification. These results show that proposed detection method is effective in social network.

  • A Two-Stage Spatiotemporal Approach for Mining Traffic Flows across Multiple Networks

    Weisong HE  Guangmin HU  Yingjie ZHOU  Haiyan JIN  

     
    LETTER-Graphs and Networks

      Vol:
    E94-A No:1
      Page(s):
    440-442

    In this letter, a new definition of two-stage spatiotemporal approach, called ICA-WFS (Independent-Component-Analysis-Weighted-Frequent-Substructure) is proposed. To facilitate capturing abnormal behavior across multiple networks and dimensionality reduction at a single Point of Presence (PoP), ICA is applied. With application of WFS, an complete graph is examined, unusual substructures of which are reported. Experiments are conducted and, together with application of backbone network (Internet2) Netflow data, show some positive results.