The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] boundary(155hit)

61-80hit(155hit)

  • Variable Block Size Motion Vector Retrieval Schemes for H.264 Inter Frame Error Concealment

    Lei WANG  Jun WANG  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER-Video Coding

      Vol:
    E91-A No:10
      Page(s):
    2945-2953

    With the ubiquitous application of Internet and wireless networks, H.264 video communication becomes more and more common. However, due to the high-efficiently predictive coding and the variable length entropy coding, it is more sensitive to transmission errors. The current error concealment (EC) scheme, which utilizes the spatial and temporal correlations to conceal the corrupted region, produces unsatisfied boundary artifacts. In this paper, first we propose variable block size error concealment (VBSEC) scheme inspired by variable block size motion estimation (VBSME) in H.264. This scheme provides four EC modes and four sub-block partitions. The whole corrupted macro-block (MB) will be divided into variable block size adaptively according to the actual motion. More precise motion vectors (MV) will be predicted for each sub-block. Then MV refinement (MVR) scheme is proposed to refine the MV of the heterogeneous sub-block by utilizing three step search (TSS) algorithm adaptively. Both VBSEC and MVR are based on our directional spatio-temporal boundary matching algorithm (DSTBMA). By utilizing these schemes, we can reconstruct the corrupted MB in the inter frame more accurately. The experimental results show that our proposed scheme can obtain better objective and subjective EC quality, respectively compared with the boundary matching algorithm (BMA) adopted in the JM11.0 reference software, spatio-temporal boundary matching algorithm (STBMA) and other comparable EC methods.

  • A Nearly Perfect Total-Field/Scattered-Field Boundary for the One-Dimensional CIP Method

    Yoshiaki ANDO  Hiroyuki SAITO  Masashi HAYAKAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1677-1683

    A total-field/scattered-field (TF/SF) boundary which is commonly used in the finite-difference time-domain (FDTD) method to illuminate scatterers by plane waves, is developed for use in the constrained interpolation profile (CIP) method. By taking the numerical dispersion into account, the nearly perfect TF/SF boundary can be achieved, which allows us to calculate incident fields containing high frequency components without fictitious scattered fields. First of all, we formulate the TF/SF boundary in the CIP scheme. The numerical dispersion relation is then reviewed. Finally the numerical dispersion is implemented in the TF/SF boundary to estimate deformed incident fields. The performance of the nearly perfect TF/SF boundary is examined by measuring leaked fields in the SF region, and the proposed method drastically diminish the leakage compared with the simple TF/SF boundary.

  • Boundary Conditions for Numerical Stability Analysis of Periodic Solutions of Ordinary Differential Equations

    Sunao MURASHIGE  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:4
      Page(s):
    1162-1168

    This paper considers numerical methods for stability analyses of periodic solutions of ordinary differential equations. Stability of a periodic solution can be determined by the corresponding monodromy matrix and its eigenvalues. Some commonly used numerical methods can produce inaccurate results of them in some cases, for example, near bifurcation points or when one of the eigenvalues is very large or very small. This work proposes a numerical method using a periodic boundary condition for vector fields, which preserves a critical property of the monodromy matrix. Numerical examples demonstrate effectiveness and a drawback of this method.

  • Shrink-Wrapped Isosurface from Cross Sectional Images

    Young Kyu CHOI  James K. HAHN  

     
    PAPER-Computer Graphics

      Vol:
    E90-D No:12
      Page(s):
    2070-2076

    This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

  • Automatic Prosody Labeling Using Multiple Models for Japanese

    Ryuki TACHIBANA  Tohru NAGANO  Gakuto KURATA  Masafumi NISHIMURA  Noboru BABAGUCHI  

     
    PAPER-Speech and Hearing

      Vol:
    E90-D No:11
      Page(s):
    1805-1812

    Automatic prosody labeling is the task of automatically annotating prosodic labels such as syllable stresses or break indices into speech corpora. Prosody-labeled corpora are important for speech synthesis and automatic speech understanding. However, the subtleness of physical features makes accurate labeling difficult. Since errors in the prosodic labels can lead to incorrect prosody estimation and unnatural synthetic sound, the accuracy of the labels is a key factor for text-to-speech (TTS) systems. In particular, mora accent labels relevant to pitch are very important for Japanese, since Japanese is a pitch-accent language and Japanese people have a particularly keen sense of pitch accents. However, the determination of the mora accents of Japanese is a more difficult task than English stress detection in a way. This is because the context of words changes the mora accents within the word, which is different from English stress where the stress is normally put at the lexical primary stress of a word. In this paper, we propose a method that can accurately determine the prosodic labels of Japanese using both acoustic and linguistic models. A speaker-independent linguistic model provides mora-level knowledge about the possible correct accentuations in Japanese, and contributes to reduction of the required size of the speaker-dependent speech corpus for training the other stochastic models. Our experiments show the effectiveness of the combination of models.

  • Improved Classification for Problem Involving Overlapping Patterns

    Yaohua TANG  Jinghuai GAO  

     
    PAPER-Pattern Recognition

      Vol:
    E90-D No:11
      Page(s):
    1787-1795

    The support vector machine has received wide acceptance for its high generalization ability in real world classification applications. But a drawback is that it uniquely classifies each pattern to one class or none. This is not appropriate to be applied in classification problem involves overlapping patterns. In this paper, a novel multi-model classifier (DR-SVM) which combines SVM classifier with kNN algorithm under rough set technique is proposed. Instead of classifying the patterns directly, patterns lying in the overlapped region are extracted firstly. Then, upper and lower approximations of each class are defined on the basis of rough set technique. The classification operation is carried out on these new sets. Simulation results on synthetic data set and benchmark data sets indicate that, compared with conventional classifiers, more reasonable and accurate information about the pattern's category could be obtained by use of DR-SVM.

  • Mining Causality from Texts for Question Answering System

    Chaveevan PECHSIRI  Asanee KAWTRAKUL  

     
    PAPER

      Vol:
    E90-D No:10
      Page(s):
    1523-1533

    This research aims to develop automatic knowledge mining of causality from texts for supporting an automatic question answering system (QA) in answering 'why' question, which is among the most crucial forms of questions. The out come of this research will assist people in diagnosing problems, such as in plant diseases, health, industrial and etc. While the previous works have extracted causality knowledge within only one or two adjacent EDUs (Elementary Discourse Units), this research focuses to mine causality knowledge existing within multiple EDUs which takes multiple causes and multiple effects in to consideration, where the adjacency between cause and effect is unnecessary. There are two main problems: how to identify the interesting causality events from documents, and how to identify the boundaries of the causative unit and the effective unit in term of the multiple EDUs. In addition, there are at least three main problems involved in boundaries identification: the implicit boundary delimiter, the nonadjacent cause-consequence, and the effect surrounded by causes. This research proposes using verb-pair rules learnt by comparing the Naïve Bayes classifier (NB) and Support Vector Machine (SVM) to identify causality EDUs in Thai agricultural and health news domains. The boundary identification problems are solved by utilizing verb-pair rules, Centering Theory and cue phrase set. The reason for emphasizing on using verbs to extract causality is that they explicitly make, in a certain way, the consequent events of cause-effect, e.g. 'Aphids suck the sap from rice leaves. Then leaves will shrink. Later, they will become yellow and dry.'. The outcome of the proposed methodology shown that the verb-pair rules extracted from NB outperform those extracted from SVM when the corpus contains high occurence of each verb, while the results from SVM is better than NB when the corpus contains less occurence of each verb. The verb-pair rules extracted from NB for causality extraction has the highest precision (0.88) with the recall of 0.75 from the plant disease corpus whereas from SVM has the highest precision (0.89) with the recall of 0.76 from bird flu news. For boundary determination, our methodology can handle very well with approximate 96% accuracy. In addition, the extracted causality results from this research can be generalized as laws in the Inductive-Statistical theory of Hempel's explanation theory, which will be useful for QA and reasoning.

  • Consideration of the Boundary Condition between Two Media in Acoustic Field Analysis Using the Constrained Interpolation Profile (CIP) Method

    Kan OKUBO  Sungqwan OH  Takao TSUCHIYA  Nobunao TAKEUCHI  

     
    LETTER-Engineering Acoustics

      Vol:
    E90-A No:9
      Page(s):
    2000-2005

    This study examines treatment of a boundary between media to simulate an acoustic field using the CIP method. The handling of spatial derivatives of fields is extremely important for CIP acoustic field analysis. We demonstrate a method of handling this boundary and report results of CIP acoustic field analysis using the present treatment.

  • Boundary Detection in Echocardiographic Images Using Markovian Level Set Method

    Jierong CHENG  Say-Wei FOO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:8
      Page(s):
    1292-1300

    Owing to the large amount of speckle noise and ill-defined edges present in echocardiographic images, computer-based boundary detection of the left ventricle has proved to be a challenging problem. In this paper, a Markovian level set method for boundary detection in long-axis echocardiographic images is proposed. It combines Markov random field (MRF) model, which makes use of local statistics with level set method that handles topological changes, to detect a continuous and smooth boundary. Experimental results show that higher accuracy can be achieved with the proposed method compared with two related MRF-based methods.

  • Color Texture Segmentation Using Color Transform and Feature Distributions

    Shiuh-Ku WENG  Chung-Ming KUO  Wei-Cung KANG  

     
    LETTER-Pattern Recognition

      Vol:
    E90-D No:4
      Page(s):
    787-790

    This letter presents a simple scheme to transform colors to some representative classes for color information reduction. Then, the weighted distributions of color index histogram (CIH) and local binary pattern (LBP) are applied to measure the similarity of adjacent texture regions during the segmentation process. In addition, for improving the segmentation accuracy, an efficient boundary checking algorithm is proposed. The proposed method not only saves execution time but also segments the distinct texture regions correctly.

  • Scattered-Field Time Domain Boundary Element Method and Its Application to Transient Electromagnetic Field Simulation in Particle Accelerator Physics

    Kazuhiro FUJITA  Hideki KAWAGUCHI  Shusuke NISHIYAMA  Satoshi TOMIOKA  Takeaki ENOTO  Igor ZAGORODNOV  Thomas WEILAND  

     
    PAPER-Numerical Techniques, Computational Electromagnetic

      Vol:
    E90-C No:2
      Page(s):
    265-274

    Authors have been working in particle accelerator wake field analysis by using the Time Domain Boundary Element Method (TDBEM). A stable TDBEM scheme was presented and good agreements with conventional wake field analysis of the FDTD method were obtained. On the other hand, the TDBEM scheme still contains difficulty of initial value setting on interior region problems for infinitely long accelerator beam pipe. To avoid this initial value setting, we adopted a numerical model of beam pipes with finite length and wall thickness on open scattering problems. But the use of such finite beam pipe models causes another problem of unwanted scattering fields at the beam pipe edge, and leads to the involvement of interior resonant solutions. This paper presents a modified TDBEM scheme, Scattered-field Time Domain Boundary Element Method (S-TDBEM) to treat the infinitely long beam pipe on interior region problems. It is shown that the S-TDBEM is able to avoid the excitation of the edge scattering fields and the involvement of numerical instabilities caused by interior resonance, which occur in the conventional TDBEM.

  • A 2-D Image Stabilization Algorithm for UWB Pulse Radars with Fractional Boundary Scattering Transform

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Vol:
    E90-B No:1
      Page(s):
    131-139

    The UWB (ultra-wideband) pulse radar is a promising candidate as an environment measurement method for rescue robots. Radar imaging to locate a nearby target is known as an ill-posed inverse problem, on which various studies have been done. However, conventional algorithms require long computational time, which makes it difficult to apply them to real-time operations of robots. We have proposed a fast radar imaging algorithm, the SEABED algorithm, for UWB pulse radars. This algorithm is based on a reversible transform, BST (Boundary Scattering Transform), between the target shape and the observed data. This transform enables us to estimate target shapes quickly and accurately in a noiseless environment. However, in a noisy environment the image estimated by the SEABED algorithm is degraded because BST utilizes differential operations. We have also proposed an image stabilization method, which utilizes the upper bound of the smoothness of received data. This method can be applied only to convex objects, not to concave ones. In this paper, we propose a fractional BST, which is obtained by expanding the conventional BST, and an image stabilization method by using the fractional BST. We show that the estimated image can be stabilized regardless of the shape of target.

  • Motion-Based Boundary Tracking of Moving Object Using Parametric Active Contour Model

    Boo Hwan LEE  Il CHOI  Gi Joon JEON  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:1
      Page(s):
    355-363

    This paper presents a motion-based boundary tracking method for a moving deformable object in an image sequence using a parametric active contour model. Deciding the local converging directions of the contour points is essential for correctly extracting the boundary of a moving deformable object. Thus, a new energy function for a parametric active contour model is proposed based on the addition of a directional energy term using a frame difference map to the greedy snake. The frame difference map is used to obtain motion information on an object with fast and non-rigid motion. Plus, updating rules for the frame difference map are also developed to encourage the stable convergence of the contour points. Experiments on a set of synthetic and real image sequences show that the proposed method could fully track a speedy deformable object while exactly extracting the boundary of the object in every frame.

  • Signal Reconstruction with Boundary-Matching via Iterative Algorithm

    Chau-Yun HSU  Tsung-Ming LO  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:11
      Page(s):
    3283-3289

    In various applications of signals transmission and processing, there is always a possibility of loss of samples. The iterative algorithm of Papoulis-Gerchberg (PG) is famous for solving the band-limited lost samples recovery problem. Two problems are known in this domain: (1) a band-limited signal practically is difficult to be obtained and (2) the convergence rate is too slow. By inserting a subtraction by a polynomial in the PG algorithm, using boundary-matched concept, a significant increase in performance and speed of its convergence has been achieved. In this paper, we propose an efficient approach to restore lost samples by adding a preprocess which meets the periodic boundary conditions of Fast Fourier transform in the iteration method. The accuracy of lost samples reconstruction by using the PG algorithm can be greatly improved with the aid of mapping the input data sequence of satisfying the boundary conditions. Further, we also developed another approach that force the signal to meet a new critical boundary conditions in Fourier domain that make the parameters of the preprocessing can be easily obtained. The simulation indicates that the mean square error (MSE) of the recovery and the convergence rate with the preprocess concept is better and faster than the one without preprocess concept. Our both proposed approaches can also be applied to other cases of signal restoration, which allow Cadzow's iterative processing method, with more convenience and flexibility.

  • Temporal Error Concealment Based on Weighted Pixel Estimator

    Tien-Ying KUO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E89-D No:9
      Page(s):
    2583-2586

    A temporal error concealment algorithm for the block-based video coder has been proposed. The concept of block overlapping is adopted to conceal the erroneous blocks, and the recovered pixels are estimated by the weighted sum from the overlapping. The overlapping weighting matrix has been carefully selected in order to fully exploit the spatial-temporal correlation between boundary blocks and the lost block. Furthermore, the motion vector for the lost block has been recovered by considering the best results for the overlapping. The experimental results are shown by integrating our algorithm into the H.263+ coder.

  • Temporal Error Concealment for H.264 Video Based on Adaptive Block-Size Pixel Replacement

    Donghyung KIM  Jongho KIM  Jechang JEONG  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E89-B No:7
      Page(s):
    2111-2114

    The H.264 standard allows each macroblock to have up to sixteen motion vectors, four reference frames, and a macroblock mode. Exploiting this feature, we present an efficient temporal error concealment algorithm for H.264-coded video. The proposed method turns out to show good performance compared with conventional approaches.

  • Context-Dependent Boundary Model for Refining Boundaries Segmentation of TTS Units

    Lijuan WANG  Yong ZHAO  Min CHU  Frank K. SOONG  Jianlai ZHOU  Zhigang CAO  

     
    PAPER-Speech Synthesis

      Vol:
    E89-D No:3
      Page(s):
    1082-1091

    For producing high quality synthesis, a concatenation-based Text-to-Speech (TTS) system usually requires a large number of segmental units to cover various acoustic-phonetic contexts. However, careful manual labeling and segmentation by human experts, which is still the most reliable way to prepare such units, is labor intensive. In this paper we adopt a two-step procedure to automate the labeling, segmentation and refinement process. In the first step, coarse segmentation of speech data is performed by aligning speech signals with the corresponding sequence of Hidden Markov Models (HMMs). Then in the second step, segment boundaries are refined with a proposed Context-Dependent Boundary Model (CDBM). Classification and Regression Tree (CART) is adopted to organize available data into a structured hierarchical tree, where acoustically similar boundaries are clustered together to train tied CDBM models for boundary refinement. Optimal CDBM parameters and training conditions are found through a series of experimental studies. Comparing with manual segmentation reference, segmentation accuracy (within a tolerance of 20 ms) is improved by the CDBMs from 78.1% (baseline) to 94.8% in Mandarin Chinese and from 81.4% to 92.7% in English, with about 1,000 manually segmented sentences used in training the models. To further reduce the amount of manual data for training CDBMs of a new speaker, we adapt a well-trained CDBM via efficient adaptation algorithms. With only 10-20 manually segmented sentences as adaptation data, the adapted CDBM achieves a segmentation accuracy of 90%.

  • Estimation of Surface Impedance for Inhomogeneous Half-Space Using Far Fields

    Michinari SHIMODA  Masazumi MIYOSHI  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2199-2207

    An inverse scattering problem of estimating the surface impedance for an inhomogeneous half-space is investigated. By virtue of the fact that the far field representation contains the spectral function of the scattered field, complex values of the function are estimated from a set of absolute values of the far field. An approximate function for the spectral function is reconstructed from the estimated complex values by the least-squares sense. The surface impedance is estimated through calculating the field on the surface of the half-space expressed by the inverse Fourier transform. Numerical examples are given and the accuracy of the estimation is discussed.

  • Absolutely Convergent Expansion of Hankel Functions for Sommerfeld Type Integral

    Bin-Hao JIANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2377-2378

    Generalized impedance boundary conditions are employed to simulate the effects of the parallel-stratified media on electromagnetic fields. Sommerfeld type integral contained in Hertz potential is expressed as the sum of two parts: zeroth order Hankel function and an absolutely convergent series expansion of spherical Hankel functions.

  • Boundary Scan Test Scheme for IP Core Identification via Watermarking

    Yu-Cheng FAN  Hen-Wai TSAO  

     
    LETTER-Programmable Logic, VLSI, CAD and Layout

      Vol:
    E88-D No:7
      Page(s):
    1397-1400

    This paper proposes a novel boundary scan test scheme for intellectual property (IP) core identification via watermarking. The core concept is embedding a watermark identification circuit (WIC) and a test circuit into the IP core at the behavior design level. The procedure depends on current IP-based design flow. This scheme can detect the identification of the IP provider without the need to examine the microphotograph after the chip has been manufactured and packaged. This scheme can successfully survive synthesis, placement, and routing and identify the IP core at various design levels. Experimental results have demonstrated that the proposed approach has the potential to solve the IP identification problem.

61-80hit(155hit)