The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] boundary(155hit)

141-155hit(155hit)

  • Weak Link Array Junctions in EuBa2Cu3O7-x Films for Microwave Detection

    Koji TSURU  Osamu MICHIKAMI  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1224-1228

    High temperature superconductors are eminently suitable for use in high frequency devices because of their large energy gap. We fabricated weak link Josephson junctions connected in series. The junctions were constructed of EuBa2Cu3O7-x (EBCO) superconducting thin films on bicrystal MgO substrates. We measured their microwave broadband detection (video detection) characteristics. The responsivity (Sr) of the junctions depended on the bias current and their normal state resistance. The array junctions were effective in increasing normal state resistance. We obtained a maximum Sr of 22.6 [V/W].

  • Two Topics in Nonlinear System Analysis through Fixed Point Theorems

    Shin'ichi OISHI  

     
    PAPER

      Vol:
    E77-A No:7
      Page(s):
    1144-1153

    This paper reviews two topics of nonlinear system analysis done in Japan. The first half of this paper concerns with nonlinear system analysis through the nondeterministic operator theory. The nondeterministic operator is a set-valued or fuzzy set valued operator by K. Horiuchi. From 1975 Horiuchi has developed fixed point theorems for nondeterministic operators. Using such fixed point theorems, he developed a unique theory for nonlinear system analysis. Horiuchi's theory provides a fundamental view point for analysis of fluctuations in nonlinear systems. In this paper, it is pointed out that Horiuchi's theory can be viewed as an extension of the interval analysis. Next, Urabe's theory for nonlinear boundary value problems is discussed. From 1965 Urabe has developed a method of computer assisted existence proof for solutions of nonlinear boundary value problems. Urabe has presented a convergence theorem for a certain simplified Newton method. Urabe's theorem is essentially based on Banach's contraction mapping theorem. In this paper, reformulation of Urabe's theory using the interval analysis is presented. It is shown that sharp error estimation can be obtained by this reformulation. Both works discussed in this paper have been done independently with the interval analysis. This paper points out that they have deep relationship with the interval analysis. Moreover, it is also pointed out that these two works suggest future directions of the interval analysis.

  • Development of a Technique to Evaluate Human Exposure to Ion-Current Fields Using Boundary Element Method--For Environmental Assessment of High Voltage Transmission Lines--

    Masaji YAMASHITA  Koichi SHIMIZU  Goro MATSUMOTO  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    714-718

    To study the biological effects of the ion-current commonly found under ultra-high voltage DC transmission lines, a technique was developed to evaluate the human exposure to the ion-current field. This technique is based on numerical analysis using the boundary element method. The difficulty of handling the space charge in the calculation was overcome by assuming a lumped source ion-current. This technique is applicable to a three-dimensionally complex object such as a human body. In comparison with theoretical values, the accuracy of this technique was evaluated to be satisfactory for our purposes. It was then applied to a human body in an ion-current field. The distribution of the electric field along the body surface was obtained. The general characteristics of the field distribution were essentially the same as in those without space charges. However, it was found that the strength of the field concentration was significantly enhanced by the space charges. Further, the field exposure when a human body was charged by an ion-current was evaluated. As the charged voltage increases, the position of the field concentration moves from a human's head toward his legs. But the shock of micro spark increases. This technique provides a useful tool for the study of biological effects and safety standards of ion-current fields.

  • A Convolution Property for Sinusoidal Unitary Transforms

    Yasuo YOSHIDA  

     
    LETTER

      Vol:
    E77-A No:5
      Page(s):
    856-863

    This paper shows that a convolution property holds for sixteen members of a sinusoidal unitary transform family (DCTs and DSTs), on condition that an impulse response is an even function. Instead of the periodicity of an input signal assumed in the DFT case, DCTs require the input signal to be even symmetric outside boundaries and DSTs require it to be odd symmetric. The property is obtained by solving the eigenvalue problem of the matrices representing the convolution. The content of the property is that the DCT (or the DST) element of the output signal is the product of the DCT (or the DST) element of the input signal and the DFT element of the impulse response. The result for the well-known DCT is useful for a strongly-correlated signal and two examples demonstrate it.

  • Representation of Surfaces on 5 and 6 Sided Regions

    Caiming ZHANG  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:3
      Page(s):
    326-334

    A C1 interpolation scheme for constructing surface patch on n-sided region (n5, 6) is presented. The constructed surface patch matches the given boundary curves and cross-boundary slopes on the sides of the n-sided region (n5, 6). This scheme has relatively simple construction, and offers one degree of freedom for adjusting interior shape of the constructed interpolation surface. The polynomial precision set of the scheme includes all the polynomials of degree three or less. The experiments for comparing the proposed scheme with two schemes proposed by Gregory and Varady respectively and also shown.

  • Modified Numerical Technique for Beam Propagation Method Based on the Galerkin's Technique

    Guosheng PU  Tetsuya MIZUMOTO  Yoshiyuki NAITO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:3
      Page(s):
    510-514

    A modified beam propagation method based on the Galerkin's technique (FE-BPM) has been implemented and applied to the analysis of optical beam propagation in a tapered dielectric waveguide. It is based on a new calculation procedure using non-uniform sampling spacings along the transverse coordinate. Comparison with a conventional FE-BPM shows a definite improvement in saving computation time. The differences of a propagation field and a mean square power given by the proposed FE-BPM are discussed in comparison with the conventional FE-BPM.

  • Frequency Characteristics of the Radiation Boundary Condition in Finite-Difference Time-Domain Method and Its Improvement

    Masao KODAMA  Mitsuru KUNINAKA  

     
    LETTER-Antennas and Propagation

      Vol:
    E77-B No:1
      Page(s):
    81-85

    When we use the finite-difference time-domain (FD-TD) method to study time-domain electromagnetic fields in the unbounded surroundings, we frequently use a radiation boundary condition (RBC) by means of one-way wave equations. The reflection coefficient by the RBC is independent of frequency, but the reflection coefficient of the finite difference approximation for the RBC depends on a frequency also; this study examines how the reflection characteristics are affected by the frequency, and the study presents the coefficients used in the RBC which gives expected reflection characteristics for a frequency, and presents the application to simulation of the matched termination of a rectangular waveguide.

  • A System for the Synthesis of High-Quality Speech from Texts on General Weather Conditions

    Keikichi HIROSE  Hiroya FUJISAKI  

     
    PAPER

      Vol:
    E76-A No:11
      Page(s):
    1971-1980

    A text-to-speech conversion system for Japanese has been developed for the purpose of producing high-quality speech output. This system consists of four processing stages: 1) linguistic processing, 2) phonological processing, 3) control parameter generation, and 4) speech waveform generation. Although the processing at the first stage is restricted to the texts on general weather conditions, the other three stages can also cope with texts of news and narrations on other topics. Since the prosodic features of speech are largely related to the linguistic information, such as word accent, syntactic structure and discourse structure, linguistic processing of a wider range than ever, at least a sentence, is indispensable to obtain good quality speech with respect to the prosody. From this point of view, input text was restricted to the weather forecast sentences and a method for linguistic processing was developed to conduct morpheme, syntactic and semantic analyses simultaneously. A quantitative model for generating fundamental frequency contours was adopted to make a good reflection of the linguistic information on the prosody of synthetic speech. A set of prosodic rules was constructed to generate prosodic symbols representing prosodic structures of the text from the linguistic information obtained at the first stage. A new speech synthesizer based on the terminal analog method was also developed to improve the segmental quality of synthetic speech. It consists of four paths of cascade connection of pole/zero filters and three waveform generators. The four paths are respectively used for the synthesis of vowels and vowel-like sounds, nasal murmur and buzz bar, friction, and plosion, while the three generators produce voicing source waveform approximated by polynomials, white Gaussian noise source for fricatives and impulse source for plosives. The validity of the approach above has been confirmed by the listening tests using speech synthesized by the developed system. Improvements both in the quality of prosodic features and in the quality of segmental features were realized for the synthetic speech.

  • On the Surface-Patch and Wire-Grid Modeling for Planar Antenna Mounted on Metal Housing

    Morteza ANALOUI  Yukio KAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:11
      Page(s):
    1450-1455

    Numerical analysis of the electromagnetic radiation from conducting surface structures is concerned. The method of moments is discussed with the surface-patch modeling in which the surface quantities, i.e. the current, charge and impedance are directly introduced and with the wire-grid modeling in which the surface quantities are approximated by the filamentary traces. The crucial element to a numerical advantage of the wire-grid modeling lies in the simplicity of its mathematical involvements that should be traded for the uncertainties in the construction of the model. The surface-patch techniques are generally not only clear and straightforward but also more reliable than the wire-grid modeling for the computation of the surface quantities. In this work, we bring about a comparative discussion of the two approaches while the analysis of a built-in planar antenna is reported. For the purpose of the comparison, the same electric field integral equation and the Galerkin's procedure with the linear expansion/testing functions are used for both the wire-grid and surface-patch modeling.

  • Fabrication and Characterization of Bi-epitaxial Grain Boundary Junctions in YBa2Cu3O7δ

    Kazuya KINOSHITA  Syuuji ARISAKA  Takeshi KOBAYASHI  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1265-1270

    We have fabricated bi-epitaxial grain boundary junctions in YBa2Cu3O7δ (YBCO) thin films by using SrTiO3 (STO) seed layers on MgO(100) substrate. YBCO film growing over the STO seed layer has a different in-plane orientation from YBCO film without the seed layer, so artificial grain boundaries were created at the edge of the seed layer. The fabricated junctions have high Tc (up to 80 K), and constant-voltage current steps are observed in response to 12.1 GHz microwave radiation. Moreover, some of the junctions show characteristic current-voltage curves comprising not only an usual Josephson-like characteristic but also a low critical current due to the flux creep. This suggests that the two characteristic parts are likely to be connected in series at the junction region.

  • The Body Fitted Grid Generation with Moving Boundary and Its Application for Optical Phase Modulation

    Michiko KURODA  Shigeaki KURODA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E76-C No:3
      Page(s):
    480-485

    In a coherent optical communication system, a polarization fluctuation of an optical fiber is one of the most important problem. On the other hand, for a realization of optical devices, dielectric waveguides with sinusoidally varying width are investigated. Knowledge of the electromagnetic field distribution in a dielectric waveguide with boundary perturbed time by time becomes a very interesting problem. This paper shows a numerical method to simulate the effect of the external disturbance against the dielectric waveguide from time to time. The author has discussed body fitted grid generation with moving boundary for the Poisson's equation and the Laplace's equation. Here we apply this theory for the dielectric waveguide. The technique employs a kind of an expanded numerical grid generation. As the author added time component to grid generation, the time dependent coordinate system which coincides with a contour of moving boundary could be transformed into fixed rectangular coordinate system. Two cases of the perturbations against the dielectric waveguide are treated. In the first case, we present the electric distribution in the dielectric waveguide perturbed along a propagation path. While in the second case, the electric field in the waveguide perturbed perpendicular to the propagation path. Such phenomena that the phase of the electric field modulated by the external perturbation are clarified by numerical results. This technique makes it possible not only to analyze the effect of the external disturbance in a coherent optical communication system but also to fabricate optical modulators or couplers.

  • Scattering of Electromagnetic Plane Waves by a Grating with Several Strips Arbitrarily Oriented in One Period

    Michinari SHIMODA  Tokuya ITAKURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E76-C No:2
      Page(s):
    326-337

    The problem of two-dimensional scattering of electromagnetic waves by a grating with several strips arbitrarily oriented in one period is analyzed by means of the Wiener-Hopf technique together with the formulation using the concept of the mutual field. A formulation for the analysis of multiple scattering from the grating is based on the representation of the scattered field by a grating composed of one strip in one period. The Wiener-Hopf equations and a representation of the scattered wave are obtained. The characteristic of the sampling function is used to expand the unknown function associated with the field on the strip into a series, and then the Wiener-Hopf equations are reduced to a set of simultaneous equations. For evaluation of the convergence and the errors in the numerical results, the relative error with respect to the extrapolated value and the square error for satisfaction of the boundary condition are computed. From numerical comparison of the present method with other various methods, it is found that the present method provides us accurate results. Some numerical examples of the reflection coefficients are presented for the reflection grating and transmission gratings.

  • Two-Dimensional Electromagnetic Wave Analysis of Single Laser Beam Trapping of Particles

    Yoshinari ISHIDO  Toshiyuki SAITO  Akio NISHIMOTO  Yoshimi KAKUI  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1758-1761

    With the use of a two-dimensional model, single laser beam trapping of particles is analyzed as the electromagnetic boundary-value problem. From the numerical results, it is found that the trapping mechanism for this system depends upon the surface field distribution of the object.

  • Eliminating Redundant Components While Building Solid Models by Surface Points Evaluation

    Chun YANG  Shan Jun ZHANG  Toshio KAWASHIMA  Yoshinao AOKI  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:11
      Page(s):
    1561-1569

    Existing solid models often contain redundant primitives and null blocks, which both slows down the rendering process and makes the process complex. There has been recent progress toward solving this problem, but existing modeling schemes cannot support eliminating all the redundancies, especially the null blocks, from the solid models. This paper proposed a technique that can eliminate redundancies. By dividing a primitive into some surface dispersed points, a new primitive representation is obtained. The sample segments of the primitive or the object are used to locate composition position to prevent the null primitives from being generated. By drawing out the geometric shape points set corresponding to a common acting area, the volume boundary of a primitive or an object is evaluated by only the Boolean set operations. The null blocks can be picked out in terms of the volume boundary. The resulting solid model generated in this way has no redundancies and is suitable for fast rendering of the image.

  • Process Simulation for Laser Recrystallization

    Bo HU  Albert SEIDL  Gertraud NEUMAYER  Reinhold BUCHNER  Karl HABERGER  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    138-144

    Modeling and numerical simulation of crystal growth of Si film and heat transport in 3D structure were made for optimization of physical and geometrical parameters used during laser recrystallization. Based on simulations a new concept called micro-absorber was introduced for obtaining defect-free Si films.

141-155hit(155hit)