The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] cancellation(232hit)

181-200hit(232hit)

  • Performance of Space-Time SIC Multiuser Detection Algorithm in Rayleigh Fading Channels

    Hwan Min KANG  Sung Ho CHO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:5
      Page(s):
    1403-1406

    We present a new space-time successive interference cancellation (ST-SIC) scheme with multiple transceiver antennas for direct-sequence code division multiple access (DS-CDMA) systems. The proposed scheme is computationally very efficient, while maintains the performance close to the previous space-time multiuser detection (ST-MUD) scheme. The bit error rate (BER) performance of the ST-SIC scheme for coherent phase shift keying (PSK) modulation is analytically examined in Rayleigh fading channels, and its validity and usefulness are demonstrated by computer simulations.

  • A New Post-Filtering Algorithm for Residual Acoustic Echo Cancellation in Hands-Free Mobile Application

    Sangki KANG  Seong-Joon BAEK  

     
    LETTER

      Vol:
    E87-B No:5
      Page(s):
    1266-1269

    We consider a new post-filtering algorithm for residual acoustic echo cancellation in hands-free application. The new post-filtering algorithm is composed of AR analysis, pitch prediction, and noise reduction algorithm. The residual acoustic echo is whitened via AR analysis and pitch prediction during no near-end talker period and then is cancelled by noise reduction algorithm. By removing speech characteristics of the residual acoustic echo, noise reduction algorithm reduces the power of the residual acoustic echo as well as the ambient noise. For the hands-free application in the moving car, the proposed system attenuated the interferences more than 15 dB at a constant speed of 80 km/h.

  • Signature and Chip Waveform Designs for Asynchronous CDMA Systems

    Ha H. NGUYEN  Ed SHWEDYK  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:5
      Page(s):
    1306-1317

    In this paper, the design of signature waveforms for asynchronous CDMA systems equipped with a correlation receiver is first considered. Optimal signature waveforms that minimize the average multiple access interference (MAI) at the output of a correlation receiver are found, while satisfying the constraint on available transmission bandwidth. Comparison to signature waveforms previously obtained for synchronous systems is also made to justify the superior performance of the designed signature waveforms in asynchronous systems. Furthermore, for direct-sequence CDMA (DS-CDMA) systems with random signature sequences, the use of multiple chip waveforms is also proposed as a means of suppressing MAI. Bandwidth constrained multiple chip waveforms that maximize the signal-to-interference ratio (SIR) at the output of each correlation receiver are found. Numerical results show that by using double chip waveforms instead of a single chip waveform, it is possible to reduce the MAI by 10% for a fixed transmission bandwidth (or equivalently, to save about 10% of transmission bandwidth for a given SIR requirement). The advantage of using double chip waveforms is also demonstrated in terms of the bit error rate (BER), whose calculation is based on our extension to Holtzman's approximation in.

  • A Novel Successive Interference Cancellation for CDMA

    Xiaodong REN  Shidong ZHOU  Zucheng ZHOU  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:2
      Page(s):
    360-363

    This letter introduces a novel multi-user detection method, successive interference cancellation based on the order of log-likelihood-ratio(LLR-SIC), for code division multiple access (CDMA) systems. Unlike the conventional successive interference cancellation (SIC) based on the order of correlation, LLR-SIC operates on the fact that the user with the largest absolute value of log-likelihood ratio (LLR) should be first detected and cancelled from received signal. Simulation results show that LLR-SIC significantly outperforms the conventional SIC and partial parallel interference cancellation (P-PIC) over Rayleigh fading channels, and that LLR-SIC performance is not sensitive to channel estimation error at medium Eb/N0.

  • An Algorithm to Use in Adaptive Wideband Duplexer for Software Radio

    Shyama KANNANGARA  Michael FAULKNER  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3452-3455

    This paper proposes a new algorithm to control an adaptive duplexer for multiband software radio. It uses a wideband low isolation device combined with a two-tap/two-loop adjustable canceller to eliminate the need for multiple switched high isolation duplexers. The taps are adjusted to provide isolation peaks in the transmit and receive bands. The algorithm is based on the superposition of squared errors and achieved 66 dB isolation of the transmit signal and a 37 dB cancellation of the transmitter noise in the receiver band.

  • A Variable Step-Size Adaptive Cross-Spectral Algorithm for Acoustic Echo Cancellation

    Xiaojian LU  Benoit CHAMPAGNE  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:11
      Page(s):
    2812-2821

    The adaptive cross-spectral (ACS) technique recently introduced by Okuno et al. provides an attractive solution to acoustic echo cancellation (AEC) as it does not require double-talk (DT) detection. In this paper, we first introduce a generalized ACS (GACS) technique where a step-size parameter is used to control the magnitude of the incremental correction applied to the coefficient vector of the adaptive filter. Based on the study of the effects of the step-size on the GACS convergence behaviour, a new variable step-size ACS (VSS-ACS) algorithm is proposed, where the value of the step-size is commanded dynamically by a special finite state machine. Furthermore, the proposed algorithm has a new adaptation scheme to improve the initial convergence rate when the network connection is created. Experimental results show that the new VSS-ACS algorithm outperforms the original ACS in terms of a higher acoustic echo attenuation during DT periods and faster convergence rate.

  • Performance of SUD and MUD Interference Cancellation Receivers in Single-Cell and Multi-Cell CDMA Systems

    Jonas KARLSSON  Hideki IMAI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:10
      Page(s):
    2996-3003

    Interference Cancellation (IC) receivers can be used in CDMA cellular systems to improve the capacity. The IC receivers can be divided into two main categories, Single-User Detectors (SUD) and Multi-User Detectors (MUD). They have different characteristics in terms of intra-cell and inter-cell interference cancellation ratios. In this paper we first introduce the Normalized Griffiths' algorithm, a SUD receiver, and compare its basic performance with the well-known Serial IC. Next we examine the multi-cell performance of SUD and MUD receivers by using multi-cell link-level simulations. The results show that even though MUD receiver has clearly better single-cell performance, the SUD receiver will gain in performance in the multi-cell cases. In the three-sector multi-cell case, their performance even becomes very similar. These results are obtained using ideal conditions to be able to study the receivers' basic properties related to intra-cell and inter-cell interference.

  • An OSIC Based Reduced-Rank MIMO Equalizer Using Conjugate Gradient Algorithm

    Chung-Lien HO  Gau-Joe LIN  Ta-Sung LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2656-2664

    A reduced complexity multiple-input multiple-output (MIMO) equalizer with ordered successive interference cancellation (OSIC) is proposed for combating intersymbol interference (ISI) and cochannel interference (CCI) over frequency-selective multipath channels. It is developed as a reduced-rank realization of the conventional MMSE decision feedback equalizer (DFE). In particular, the MMSE weight vectors at each stage of OSIC are computed based on the generalized sidelobe canceller (GSC) technique and reduced-rank processing is incorporated by using the conjugate gradient (CG) algorithm for reduced complexity implementation. The CG algorithm leads to a best low-rank representation of the GSC blocking matrix via an iterative procedure, which in turn gives a reduced-rank equalizer weight vector achieving the best compromise between ISI and CCI suppression. With the dominating interference successfully cancelled at each stage of OSIC, the number of iterations required for the convergence of the CG algorithm decreases accordingly for the desired signal. Computer simulations demonstrate that the proposed reduced-rank MIMO DFE can achieve nearly the same performance as the full-rank MIMO MMSE DFE with an effective rank much lower than the dimension of the signal-plus-interference subspace.

  • On Practical Implementation of the PIC Algorithm in Asynchronous CDMA Systems

    Young Wha KIM  Sung Ho CHO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2508-2511

    In this letter, we present a practical method of implementing the parallel interference cancellation (PIC) algorithm in an asynchronous CDMA system. A novel pipelined structure is employed in this method in order to reduce the processing delay and the memory space comparing to the conventional PIC processing scheme.

  • RFI Cancellation in DMT VDSL: A Digital Frequency Domain Scheme

    Riccardo LOCATELLI  Silvia BRINI  Luca FANUCCI  Christophe Del TOSO  

     
    PAPER

      Vol:
    E86-A No:8
      Page(s):
    1993-2000

    In this paper a digital frequency domain RFI (Radio Frequency Interference) cancellation scheme for DMT (Discrete Multitone) based VDSL (Very high speed Digital Subscriber Line) systems is presented. The proposed algorithm has been optimized and characterized in terms of complexity and performance. Optimizations were also performed from an implementation point of view by deducing key dependencies among our RFI model coefficients that let us drastically reduce the size of the memories involved. System simulations showed the effectiveness of the canceller: in terms of VDSL performance parameters such as bit rate, the optimized cancellation scheme recovers almost totally the performance degradation due to RFI.

  • Crosstalk Equalization for High-Speed Digital Transmission Systems

    Hui-Chul WON  Gi-Hong IM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1063-1072

    In this paper, we discuss crosstalk equalization technique for high-speed digital transmission systems. This equalization technique makes use of the cyclostationarity of the crosstalk interferer. We first analyze the eigenstructure of the equalizer in the presence of cyclostationary crosstalk interference. It is shown that the eigenvalues of the equalizer depend upon the folded signal and interferer power spectra, and the cross power spectrum between the signal and the interferer. The expressions of the minimum mean square error (MMSE) and the excess MSE are then obtained by using the equalizer's eigenstructure. Analysis and simulation results indicate that such peculiar equalizer's eigenstructure in the presence of cyclostationary interference results in significantly different initial convergence and steady-state behaviors as compared with the stationary noise case. We also show that the performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and the crosstalk interferer.

  • Capacity Optimization by Using Cancellation-Error-Ascending Decoding Order in Multimedia CDMA Networks with Imperfect Successive Interference Cancellation

    Tao SHU  Zhisheng NIU  

     
    LETTER

      Vol:
    E86-B No:1
      Page(s):
    375-379

    We study the influence of decoding order on the capacity of multimedia DS-CDMA system employing imperfect successive interference cancellation. We prove that the capacity is maximized by decoding users according to the ascending order of cancellation errors. We also prove that this capacity-optimal decoding order makes total residual interference minimum at the same time.

  • Multi-Stage Partial Parallel Interference Cancellation Receivers for Multi-Rate DS-CDMA System

    Seung Hee HAN  Jae Hong LEE  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    170-180

    In this paper, two types of multi-stage partial parallel interference cancellation (PIC) receivers are considered for multi-rate DS-CDMA system: multi-stage PIC receiver with partial cancellation factors and multi-stage PIC receiver with decision thresholds. Bit error rate (BER) of the multi-stage partial PIC receivers is obtained by simulation in a Rayleigh fading channel. It is shown that the multi-stage partial PIC receivers achieve smaller BER than the matched filter (MF) receiver, multi-stage PIC receiver, group-wise successive interference cancellation (GSIC) receiver, and extended GSIC receiver (EGSIC) for the multi-rate DS-CDMA system in a Rayleigh fading channel.

  • CDMA Multi-Cell Performance of Combined Serial Interference Canceller and Normalized Griffiths' Algorithm

    Jonas KARLSSON  Hideki IMAI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    162-169

    Interference Cancellation (IC) receivers can be used in CDMA cellular systems to improve the capacity. The IC receivers can be divided into two main categories, Single-User Detectors (SUD) and Multi-User Detectors (MUD). They have different characteristics in terms of intra-cell and inter-cell interference cancellation ability. In this paper we propose two new IC receivers that combines the properties of SUD and MUD receivers. The first one is a Serial IC receiver followed by the Normalized Griffiths' algorithm (SING). The second one is an Integrated Serial IC and Normalized Griffiths' algorithm (iSING). We first compare their basic single-cell performance with the conventional RAKE receiver, the Serial IC and the Normalized Griffiths' Algorithm. Next, we examine their multi-cell performance by doing multi-cell link-level simulations. The results show that even though the Serial IC receiver has good single-cell performance, the proposed receivers have as much as 35-40% higher capacity than the Serial IC receiver in the multi-cell case under the ideal conditions assumed in this paper.

  • Performance of Parallel Interference Cancellation with Reverse-Link Synchronous Transmission Technique for DS-CDMA System in Multipath Fading Channels

    Woong SUN  Seung-Hoon HWANG  Duk Kyung KIM  Keum-Chan WHANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1622-1626

    This paper introduces an improved multistage parallel interference cancellation (PIC) technique that uses the reverse-link synchronous transmission technique (RLSTT) to improve the estimation of data at the initial stage. Because the subtraction of an interfering signal based on an incorrect bit decision quadruples the interference power for that signal, the relatively high decision bit error rate (BER) may lead to a poor cancellation or even a higher BER at the following stages. The RLSTT is a robust approach which takes into account the fact the tentative decision at the earlier stages is less reliable than the following stages and makes the earlier cancellation more reliable. The analysis demonstrates that a better transmission performance can be achieved by using the RLSTT at the initial stage of PIC.

  • A New Estimation Method of Propagation Characteristics Using Pilot-Data-Inserted OFDM Signals for High-Mobility OFDM Transmission Scheme

    Hiroshi HARADA  Takako YAMAMURA  Masayuki FUJISE  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    882-894

    A method for estimating propagation characteristics is described that uses the characteristics of pilot-data-inserted orthogonal frequency division multiplexing (OFDM) signal and is suitable for high-mobility OFDM transmission scheme. Several pilot data are inserted periodically along the frequency axis before the inverse fast Fourier transformation (IFFT) process in the transmitter. At the receiver, the received OFDM signal is correlated with a prepared distinctive OFDM signal in which several pilot data are inserted in the same positions as in the transmitted OFDM symbols and zeros are inserted in the other positions. The propagation characteristics can be estimated precisely and used to cancel any interference caused by delayed waves. Computer simulation shows that this method can estimate the propagation characteristics, which can then be used to cancel the interference caused by delayed waves before the FFT at the receiver under fast multipath fading conditions.

  • Iterative Demodulation and Channel Estimation of Orthogonal Signaling Formats in Asynchronous DS-CDMA Systems

    Erik G. STROM  Scott L. MILLER  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    442-451

    Iterative schemes for demodulating M-ary orthogonal signaling formats in direct-sequence code-division multiple access (DS-CDMA) systems are proposed and compared with the standard noncoherent matched filter receiver. Interference cancellation, i.e., (approximative) removal of the multiple access interference (MAI) by means of subtraction is studied. The considered system is similar to the uplink (reverse link) of an IS-95 system. Hence, the received signals from the concurrent users are asynchronous, and no pilot signals are available for channel estimation. A decision-directed algorithm is proposed for estimating the time-varying complex channel gains of a multipath channel. The receivers are evaluated on Rayleigh-fading channels and are shown to provide large capacity gains compared with the conventional receiver.

  • Performance of SIC Scheme with an Activity-Based Disparity Estimation in a DS/CDMA System

    Chiho LEE  Gwangzeen KO  Kiseon KIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:2
      Page(s):
    495-501

    In this paper, we propose an activity-based estimation scheme to determine the received signal power disparity, that enhances the BER performance of the SIC scheme in a DS/CDMA system considering a practical voice activity factor, and compare BER performance with those of other schemes with or without estimation. Numerical analysis results show that the SIC scheme with the proposed activity-based estimation improves the BER performance compared with that without considering voice activity, and it approaches to that of the ideal estimation as the total number of concurrent users increases. In addition, the higher becomes the maximum attainable SNR, the better becomes the BER performance of the proposed activity-based estimation scheme.

  • Fully On-Chip Active Guard Band Circuit for Digital Noise Cancellation

    Shigetaka TAKAGI  Retdian Agung NICODIMUS  Kazuyuki WADA  Nobuo FUJII  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    373-380

    A fully on-chip active guard band circuit is proposed. The proposed circuit is mainly composed of current mirrors and based on a DC bias technique. HSPICE simulations and experiment results confirm the validity of the proposed active guard band circuit.

  • Multi-Rate Interference Canceller Suitable for Software Defined Radio (SDR) Architectures in CDMA-Based Systems

    Young-Hwan YOU  Jong-Ho PAIK  Je-Woo KIM  Byeong-Ho CHOI  Hyeok-Koo JUNG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:10
      Page(s):
    2896-2900

    In this letter, we focus on achieving the reconfiguration of a multi-rate interference cancellation (IC) scheme via a software radio implementation. In the proposed multi-rate IC scheme, the estimates of each user signal are updated every cancellation stage with more clean signal, which are used in the next stage to yield more reliable estimates.

181-200hit(232hit)