The search functionality is under construction.

Keyword Search Result

[Keyword] capacitance formula(2hit)

1-2hit
  • Formula-Based Method for Capacitance Extraction of Interconnects with Dummy Fills

    Atsushi KUROKAWA  Akira KASEBE  Toshiki KANAMOTO  Yun YANG  Zhangcai HUANG  Yasuaki INOUE  Hiroo MASUDA  

     
    PAPER

      Vol:
    E89-A No:4
      Page(s):
    847-855

    In advanced ASIC/SoC physical designs, interconnect parasitic extraction is one of the important factors to determine the accuracy of timing analysis. We present a formula-based method to efficiently extract interconnect capacitances of interconnects with dummy fills for VLSI designs. The whole flow is as follows: 1) in each process, obtain capacitances per unit length using a 3-D field solver and then create formulas, and 2) in the actual design phase, execute a well-known 2.5-D capacitance extraction. Our results indicated that accuracies of the proposed formulas were almost within 3% error. The proposed formula-based method can extract interconnect capacitances with high accuracy for VLSI circuits. Moreover, we present formulas to evaluate the effect of dummy fills on interconnect capacitances. These can be useful for determining design guidelines, such as metal density before the actual design, and for analyzing the effect of each structural parameter during the design phase.

  • Second-Order Polynomial Expressions for On-Chip Interconnect Capacitance

    Atsushi KUROKAWA  Masanori HASHIMOTO  Akira KASEBE  Zhangcai HUANG  Yun YANG  Yasuaki INOUE  Ryosuke INAGAKI  Hiroo MASUDA  

     
    PAPER-Interconnect

      Vol:
    E88-A No:12
      Page(s):
    3453-3462

    Simple closed-form expressions for efficiently calculating on-chip interconnect capacitances are presented. The formulas are expressed with second-order polynomial functions which do not include exponential functions. The runtime of the proposed formulas is about 2-10 times faster than those of existing formulas. The root mean square (RMS) errors of the proposed formulas are within 1.5%, 1.3%, 3.1%, and 4.6% of the results obtained by a field solver for structures with one line above a ground plane, one line between ground planes, three lines above a ground plane, and three lines between ground planes, respectively. The proposed formulas are also superior in accuracy to existing formulas.