The search functionality is under construction.

Keyword Search Result

[Keyword] channel sounding(7hit)

1-7hit
  • Millimeter-Wave Radio Channel Characterization Using Multi-Dimensional Sub-Grid CLEAN Algorithm

    Minseok KIM  Tatsuki IWATA  Shigenobu SASAKI  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:7
      Page(s):
    767-779

    In radio channel measurements and modeling, directional scanning via highly directive antennas is the most popular method to obtain angular channel characteristics to develop and evaluate advanced wireless systems for high frequency band use. However, it is often insufficient for ray-/cluster-level characterizations because the angular resolution of the measured data is limited by the angular sampling interval over a given scanning angle range and antenna half power beamwidth. This study proposes the sub-grid CLEAN algorithm, a novel technique for high-resolution multipath component (MPC) extraction from the multi-dimensional power image, so called double-directional angular delay power spectrum. This technique can successfully extract the MPCs by using the multi-dimensional power image. Simulation and measurements showed that the proposed technique could extract MPCs for ray-/cluster-level characterizations and channel modeling. Further, applying the proposed method to the data captured at 58.5GHz in an atrium entrance hall environment which is an indoor hotspot access scenario in the fifth generation mobile system, the multipath clusters and corresponding scattering processes were identified.

  • A Novel Low-Overhead Channel Sounding Protocol for Downlink Multi-User MIMO in IEEE 802.11ax WLAN Open Access

    Toshihisa NABETANI  Narendar MADHAVAN  Hiroki MORI  Tsuguhide AOKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/09/15
      Vol:
    E101-B No:3
      Page(s):
    924-932

    The next generation wireless LAN standard IEEE 802.11ax aims to provide improved throughput performance in dense environments. We have proposed an efficient channel sounding mechanism for DL-MU-MIMO that has been adopted as a new sounding protocol in the 802.11ax standard. In this paper, we evaluate the overhead reduction in the 802.11ax sounding protocol compared with the 802.11ac sounding protocol. Sounding is frequently performed to obtain accurate channel information from the associated stations in order to improve overall system throughput. However, there is a trade-off between accurate channel information and the overhead incurred due to frequent sounding. Therefore, the sounding interval is an important factor that determines system throughput in DL-MU-MIMO transmission. We also evaluate the effect of sounding interval on the system throughput performance using both sounding protocols and provide a comparative analysis of the performance improvement.

  • Versatile Radio Channel Sounder for Double Directional and Multi-link MIMO Channel Measurements at 11 GHz

    Yohei KONISHI  Yuyuan CHANG  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    994-1004

    This paper presents a $24 imes24$ MIMO channel sounder that has been developed based on a scalable fully parallel MIMO architecture. It can be flexibly configured with 3 sub-transmitters and 3 sub-receivers, each of which consists of 8 RF ports. This flexibility allows the measurement for both purposes of double directional and multi-link MIMO channel measurements. Implementation issues related to the multi-link operation on the fully parallel architecture were successfully solved by appropriate system design and applying several calibration techniques. The performance of the developed system was validated by extensive test experiments. Finally, a multi-link channel measurement example in an indoor environment was presented demonstrating the capability of the proposed system.

  • Dynamic Spectrum Control Aided Spectrum Sharing with Nonuniform Sampling-Based Channel Sounding

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3172-3180

    This paper studies channel sounding for selfish dynamic spectrum control (S-DSC) in which each link dynamically maps its spectral components onto a necessary amount of discrete frequencies having the highest channel gain of the common system band. In S-DSC, it is compulsory to conduct channel sounding for the entire system band by using a reference signal whose spectral components are sparsely allocated by S-DSC. Using nonuniform sampling theory, this paper exploits the finite impulse response characteristic of frequency selective fading channels to carry out the channel sounding. However, when the number of spectral components is relatively small compared to the number of discrete frequencies of the system band, reliability of the channel sounding deteriorates severely due to the ill-conditioned problem and degradation in channel capacity of the next frame occurs as a result. Aiming at balancing frequency selection diversity effect and reliability of channel sounding, this paper proposes an S-DSC which allocates an appropriate number of spectral components onto discrete frequencies with low predicted channel gain besides mapping the rest onto those with high predicted channel gain. A numerical analysis confirms that the proposed S-DSC gives significant enhancement in channel capacity performance.

  • A Novel Transmit Scheme in CDM-Based MIMO Channel Sounding Systems

    Minjae KIM  Heung-Ryeol YOU  Hyuckjae LEE  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:9
      Page(s):
    2428-2432

    The code division multiplexing (CDM)-based MIMO channel sounder architecture is efficient at measuring fast fading MIMO channels. This paper examines loosely synchronous (LS), CAZAC, Kasami, and Chaotic sequences as probing signals in the CDM architecture. After comparing the performance of the channel measurement among the sequences, it is concluded that the LS sequences are the most appropriate codes for the probing signals. However, because LS sequences have a significant drawback in that the number of transmit antennas is limited to less than 4, we propose using a hybrid architecture combining CDM with TDM for supporting a greater number of transmit antennas. The simulation results show that the proposed scheme can improve the measurement performance when more than 4 transmit antennas are used.

  • Turbo Transceivers for MIMO Wireless Communications and Their Performance Verification via Multi-Dimensional Channel Sounding

    Tadashi MATSUMOTO  Reiner S. THOMA  

     
    INVITED PAPER

      Vol:
    E88-B No:6
      Page(s):
    2239-2251

    The discovery of the Turbo codes has driven research on the creation of new signal detection concepts that are, in general, referred to as the Turbo approach. Recently, this approach has made a drastic change in creating signal detection techniques and algorithms such as equalization of inter-symbol interference (ISI) experienced by broadband single carrier signaling over mobile radio channels. A goal of this paper is to provide readers with broad views and knowledge of the Turbo concept-based Multiple-Input Multiple-Output (MIMO) signal transmission techniques. How the techniques have been developed in various applications and how they perform in real-field environments are introduced.

  • Optimized Wideband System for Unbiased Mobile Radio Channel Sounding with Periodic Spread Spectrum Signals

    Tobias FELHAUER  Paul W. BAIER  Winfried KÖNIG  Werner MOHR  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1016-1029

    In this paper, an optimized wideband channel sounder designed for measuring the time variant impulse response of outdoor radio channels in the frequency range 1800-2000 MHz is presented. Prior to hardware implementation the system was first modelled on a high performance supercomputer to enable the system designer to optimize the digital signal processing algorithms and the parameters of the hardware components by simulation. It is shown that the proposed measuring system offers a significantly larger amplitude resolution, i.e. dynamic range, than conventional systems applying matched filtering. This is achieved by transmitting digitally generated periodic spread spectrum test signals adjusted to amplifier non-linearities and by applying optimum unbiased estimation instead of matched filtering in the receiver. A further advantage of the hardware implementation of the proposed system compared to conventional systems [5]-[7] is its high flexibility with respect to measuring bandwidth, period of the test signal and sounding rate. The main features of the optimized system are described and first measurement results are presented.