The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] circuit theory and design(4hit)

1-4hit
  • Neuron-MOSVT Cancellation Circuit and Its Application to a Low-Power and High-Swing Cascode Current Mirror

    Koichi TANNO  Jing SHEN  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E81-A No:1
      Page(s):
    110-116

    In this paper, a threshold voltage (VT) cancellation circuit for neuron-MOS (νMOS) analog circuits is described. By connecting the output terminal of this circuit with one of the input terminals of the νMOS transistor, cancellation ofVT is realized. The circuit has advantages of ground-referenced output and is insensitive to the fluctuation of bias and supply voltages. Second-order effects, such as the channel length modulation effect, the mobility reduction effect and device mismatch of the proposed circuit are analyzed in detail. Low-power and high-swing νMOS cascode current mirror is presented as an application. Performance of the proposed circuits is confirmed by HSPICE simulation with MOSIS 2. 0 µ p-well double-poly and double-metal CMOS device parameters.

  • 1: n2 MOS Cascode Circuits and Their Applications

    Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E79-A No:12
      Page(s):
    2159-2165

    This paper describes an N-type and a P-type MOS cascode circuit based on the square-law characteristics of an MOS transistor in saturation region. The transconductance parameter ratios of an upper and a lower MOS transistor are set to be 1: n2 for the N-type MOS cascode circuit and n2: 1 for the P-type MOS cascode circuit. The N and P-type MOS cascode circuits are divided to four types by the difference of connections of input terminals. We consider the input-output relations of each type circuit. The second-order effects of the circuit such as channel length modulation effect, mobility reduction effect and device mismatch are analyzed. As applications, an analog voltage adder and a VT level shifter using MOS cascode circuits are presented. All of the proposed circuits are very simple and consist of only the N and P-type MOS cascode circuits. The proposed circuits aer confirmed by SPICE simulation with MOSIS 1.2µm CMOS process parameters.

  • A New CMOS Linear Transconductor

    Sang-Ho LEE  Tae-Soo YIM  Young-Hwan KIM  

     
    LETTER-Electronic Circuits

      Vol:
    E79-C No:8
      Page(s):
    1166-1170

    A new CMOS analogue transconductor is proposed and simulated. This transconductor is based on the operation of MOS transistors in the linear region and has a good linearity. The simulation result shows that less than 1% distortion can be obtained for the differential input signal of 6.4 Vp-p with IB=80µA and supply voltage of 5V.

  • Design of a Novel MOS VT Extractor Circuit

    Koichi TANNO  Okihiko ISHIZUKA  Zhen TANG  

     
    LETTER-Electronic Circuits

      Vol:
    E78-C No:9
      Page(s):
    1306-1310

    This paper describes a novel input-free MOS VT extractor circuit. The circuit consists of a bias voltage block and a novel VT extractor block. The proposed VT extractor block has the advantages of the ground-referenced output, low influence of the nonideality, few numbers of transistors and no influence of the PMOS process. The PSpice simulations show the supply voltage range and the bias voltage range of the proposed circuit are wider than those of Johnson's or Wang's.