The search functionality is under construction.

Keyword Search Result

[Keyword] diff(920hit)

121-140hit(920hit)

  • Comprehensive Analysis of the Impact of TWDP Fading on the Achievable Error Rate Performance of BPSK Signaling

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    500-507

    To effectively analyze the influence of two-wave with diffuse power (TWDP) fading on the achievable error rate performance of binary phase-shift keying (BPSK) signaling, we derive two novel concise asymptotic closed-form bit error rate (BER) formulas. We perform asymptotic analysese based on existing exact and approximate BER formulas, which are obtained from the exact probability density function (PDF) or moment generating function (MGF), and the approximate PDF of TWDP fading. The derived asymptotic closed-form expressions yield explicit insights into the achievable error rate performance in TWDP fading environments. Furthermore, the absolute relative error (ARE) between the exact and approximate coding gains is investigated, from which we also propose a criterion for the order of an approximate PDF, which is more robust than the conventional criterion. Numerical results clearly demonstrate the accuracy of the derived asymptotic formulas, and also support our proposed criterion.

  • On the Design Rationale of SIMON Block Cipher: Integral Attacks and Impossible Differential Attacks against SIMON Variants

    Kota KONDO  Yu SASAKI  Yosuke TODO  Tetsu IWATA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    88-98

    SIMON is a lightweight block cipher designed by NSA in 2013. NSA presented the specification and the implementation efficiency, but they did not provide detailed security analysis nor the design rationale. The original SIMON has rotation constants of (1,8,2), and Kölbl et al. regarded the constants as a parameter (a,b,c), and analyzed the security of SIMON block cipher variants against differential and linear attacks for all the choices of (a,b,c). This paper complements the result of Kölbl et al. by considering integral and impossible differential attacks. First, we search the number of rounds of integral distinguishers by using a supercomputer. Our search algorithm follows the previous approach by Wang et al., however, we introduce a new choice of the set of plaintexts satisfying the integral property. We show that the new choice indeed extends the number of rounds for several parameters. We also search the number of rounds of impossible differential characteristics based on the miss-in-the-middle approach. Finally, we make a comparison of all parameters from our results and the observations by Kölbl et al. Interesting observations are obtained, for instance we find that the optimal parameters with respect to the resistance against differential attacks are not stronger than the original parameter with respect to integral and impossible differential attacks. Furthermore, we consider the security against differential attacks by considering differentials. From the result, we obtain a parameter that is potential to be better than the original parameter with respect to security against these four attacks.

  • A Fast Computation Technique on the Method of Image Green's Function by a Spectral Domain Periodicity

    Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    56-64

    This paper newly proposes a fast computation technique on the method of image Green's function for p-characteristic calculations, when a plane wave with the transverse wavenumber p is incident on a periodic rough surface having perfect conductivity. In the computation of p-characteristics, based on a spectral domain periodicity of the periodic image Green's function, the image integral equation for a given incidence p maintains the same form for other particular incidences except for the excitation term. By means of a quadrature method, such image integral equations lead to matrix equations. Once the first given matrix equation is performed by a solution procedure as calculations of its matrix elements and its inverse matrix, the other matrix equations for other particular incidences no longer need such a solution procedure. Thus, the total CPU time for the computation of p-characteristics is largely reduced in complex shaped surface cases, huge roughness cases or large period cases.

  • Scattering of a Beam Wave by the End-Face of an Ordered Waveguide System at Low Grazing Incidence

    Akira KOMIYAMA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    48-51

    In the plane wave scattering from a periodic grating high order diffracted plane waves disappear at a low grazing angle limit of incidence. In this paper the scattering of a beam wave by the end-face of an ordered waveguide system composed of identical cores of equal space is treated by the perturbation method and the scattered field is analytically derived. The possibility that high order diffracted beam waves remain at a low grazing angle limit of incidence is shown.

  • New Perfect Gaussian Integer Sequences from Cyclic Difference Sets

    Tao LIU  Chengqian XU  Yubo LI  Kai LIU  

     
    LETTER-Information Theory

      Vol:
    E100-A No:12
      Page(s):
    3067-3070

    In this letter, three constructions of perfect Gaussian integer sequences are constructed based on cyclic difference sets. Sufficient conditions for constructing perfect Gaussian integer sequences are given. Compared with the constructions given by Chen et al. [12], the proposed constructions relax the restrictions on the parameters of the cyclic difference sets, and new perfect Gaussian integer sequences will be obtained.

  • Improvements on Security Evaluation of AES against Differential Bias Attack

    Haruhisa KOSUGE  Hidema TANAKA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:11
      Page(s):
    2398-2407

    In ASIACRYPT2015, a new model for the analysis of block cipher against side-channel attack and a dedicated attack, differential bias attack, were proposed by Bogdanov et al. The model assumes an adversary who has leaked values whose positions are unknown and randomly chosen from internal states (random leakage model). This paper improves the security analysis on AES under the random leakage model. In the previous method, the adversary requires at least 234 chosen plaintexts; therefore, it is hard to recover a secret key with a small number of data. To consider the security against the adversary given a small number of data, we reestimate complexity. We propose another hypothesis-testing method which can minimize the number of required data. The proposed method requires time complexity more than t>260 because of time-data tradeoff, and some attacks are tractable under t≤280. Therefore, the attack is a threat for the long-term security though it is not for the short-term security. In addition, we apply key enumeration to the differential bias attack and propose two evaluation methods, information-theoretic evaluation and experimental one with rank estimation. From the evaluations on AES, we show that the attack is a practical threat for the long-term security.

  • Proposal of Novel Optical Model for Light-Diffusing Film Having Alternating Polymer Layers with Different Refractive Indices

    Souichiro SEO  Masahiro NISHIZAWA  Yuya HORII  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E100-C No:11
      Page(s):
    1047-1051

    We have proposed the novel optical model for layer structure film to precisely control light diffusion angle range. By introducing structure characteristics to the phase grating model, we successfully constructed the novel optical model. In addition, we clarified that difference of refractive indices of layer structure and layer width are important factors for precisely control of light diffusion angle range.

  • Two Classes of Optimal Constant Composition Codes from Zero Difference Balanced Functions

    Bing LIU  Xia LI  Feng CHENG  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2183-2186

    Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.

  • Input and Output Privacy-Preserving Linear Regression

    Yoshinori AONO  Takuya HAYASHI  Le Trieu PHONG  Lihua WANG  

     
    PAPER-Privacy, anonymity, and fundamental theory

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2339-2347

    We build a privacy-preserving system of linear regression protecting both input data secrecy and output privacy. Our system achieves those goals simultaneously via a novel combination of homomorphic encryption and differential privacy dedicated to linear regression and its variants (ridge, LASSO). Our system is proved scalable over cloud servers, and its efficiency is extensively checked by careful experiments.

  • New Optimal Constant Weight Codes from Difference Balanced Functions

    Wei SU  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2180-2182

    Constant weight codes have mathematical interest and practical applications such as coding for bandwidth-efficient channels and construction of spherical codes for modulation. In this letter, by using difference balanced functions with d-form property, we constructed a class of constant composition code with new parameters, which achieves the equal sign of generalized Johnson bound.

  • Transient Analysis of Anisotropic Dielectrics and Ferromagnetic Materials Based on Unconditionally Stable Perfectly-Matched-Layer (PML) Complex-Envelope (CE) Finite-Difference Time-Domain (FDTD) Method

    Sang-Gyu HA  Jeahoon CHO  Kyung-Young JUNG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/03/14
      Vol:
    E100-B No:10
      Page(s):
    1879-1883

    Anisotropic dielectrics and ferromagnetic materials are widely used in dispersion-engineered metamaterials. For example, nonreciprocal magnetic photonic crystals (MPhCs) are periodic structures whose unit cell is composed of two misaligned anisotropic dielectric layers and one ferromagnetic layer and they have extraordinary characteristics such as wave slowdown and field amplitude increase. We develop an unconditionally stable complex-envelop alternating-direction-implicit finite-difference time-domain method (CE-ADI-FDTD) suitable for the transient analysis of anisotropic dielectrics and ferromagnetic materials. In the proposed algorithm, the perfectly-matched-layer (PML) is straightforwardly incorporated in Maxwell's curl equations. Numerical examples show that the proposed PML-CE-ADI-FDTD method can reduce the CPU time significantly for the transient analysis of anisotropic dielectrics and ferromagnetic materials while maintaining computational accuracy.

  • On the Security of Non-Interactive Key Exchange against Related-Key Attacks

    Hiraku MORITA  Jacob C.N. SCHULDT  Takahiro MATSUDA  Goichiro HANAOKA  Tetsu IWATA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1910-1923

    Non-Interactive Key Exchange (NIKE) is a cryptographic primitive that allows two users to compute a shared key without any interaction. The Diffie-Hellman key exchange scheme is probably the most well-known example of a NIKE scheme. Freire et al. (PKC 2013) defined four security notions for NIKE schemes, and showed implications among them. In these notions, we consider an adversary that is challenged to distinguish a shared key of a new pair of users from a random value, using only its knowledge of keys shared between other pairs of users. To take into account side-channel attacks such as tampering and fault-injection attacks, Bellare and Kohno (Eurocrypt 2003) formalized related-key attacks (RKA), where stronger adversaries are considered. In this paper, we introduce four RKA security notions for NIKE schemes. In these notions, we consider an adversary that can also manipulate the secret keys of users and obtain shared keys computed under the modified secret keys. We also show implications and separations among the security notions, and prove that one of the NIKE schemes proposed by Freire et al. is secure in the strongest RKA sense in the random oracle model under the Double Strong Diffie-Hellman (DSDH) assumption over the group of signed quadratic residues, which is implied by the factoring assumption.

  • Improved Multiple Impossible Differential Cryptanalysis of Midori128

    Mohamed TOLBA  Ahmed ABDELKHALEK  Amr M. YOUSSEF  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:8
      Page(s):
    1733-1737

    Midori128 is a lightweight block cipher proposed at ASIACRYPT 2015 to achieve low energy consumption per bit. Currently, the best published impossible differential attack on Midori128 covers 10 rounds without the pre-whitening key. By exploiting the special structure of the S-boxes and the binary linear transformation layer in Midori128, we present impossible differential distinguishers that cover 7 full rounds including the mix column operations. Then, we exploit four of these distinguishers to launch multiple impossible differential attack against 11 rounds of the cipher with the pre-whitening and post-whitening keys.

  • Autonomic Diffusive Load Balancing on Many-Core Architecture Using Simulated Annealing

    Hyunjik SONG  Kiyoung CHOI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:8
      Page(s):
    1640-1649

    Many-core architecture is becoming an attractive design choice in high-end embedded systems design. There are, however, many important design issues, and load balancing is one of them. In this work, we take the approach of diffusive load balancing which enables autonomic load distribution in many-core systems. We improve the existing schemes by adding the concept of simulated annealing for more effective load distribution. The modified scheme is also capable of managing a situation of non-uniform granularity of task loading, which the existing ones cannot. In addition, the suggested scheme is extended to be able to handle dependencies existing in task graphs where tasks have communications between each other. As experiments, we tried various existing schemes as well as the proposed one to map synthetic applications and real world applications on a many-core architecture with 21 cores and 4 memory tiles. For the applications without communications, the experiments show that the proposed scheme gives the best results in terms of peak load and standard deviation. For real applications such as mp3 decoder and h.263 encoder which have communications between tasks, we show the effectiveness of our communication-aware scheme for load balancing in terms of throughput.

  • A Third-Order Multibit Switched-Current Delta-Sigma Modulator with Switched-Capacitor Flash ADC and IDWA

    Guo-Ming SUNG  Leenendra Chowdary GUNNAM  Wen-Sheng LIN  Ying-Tzu LAI  

     
    PAPER-Electronic Circuits

      Vol:
    E100-C No:8
      Page(s):
    684-693

    This work develops a third-order multibit switched-current (SI) delta-sigma modulator (DSM) with a four-bit switched-capacitor (SC) flash analog-to-digital converter (ADC) and an incremental data weighted averaging circuit (IDWA), which is fabricated using 0.18µm 1P6M CMOS technology. In the proposed DSM, a 4-bit SC flash ADC is used to improve its resolution, and an IDWA is used to reduce the nonlinearity of digital-to-analog converter (DAC) by moving the quantization noise out of the signal band by first-order noise shaping. Additionally, the proposed differential sample-and-hold circuit (SH) exhibits low input impedance with feedback and width-length adjustment in the SI feedback memory cell (FMC) to increase the conversion rate. A coupled differential replicate (CDR) common-mode feedforward circuit (CMFF) is used to compensate for the mirror error that is caused by the current mirror. Measurements indicate that the signal-to-noise ratio (SNR), dynamic range (DR), effective number of bits (ENOB), power consumption, and chip area are 64.1 dB, 64.4 dB, 10.36 bits, 18.82 mW, and 0.45 × 0.67 mm2 (without I/O pad), respectively, with a bandwidth of 20 kHz, an oversampling ratio (OSR) of 256, a sampling frequency of 10.24 MHz, and a supply voltage of 1.8 V.

  • Design Method for Low-Delay Maximally Flat FIR Digital Differentiators with Variable Stopbands Obtained by Minimizing Lp Norm

    Ryosuke KUNII  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:7
      Page(s):
    1513-1521

    Linear phase maximally flat digital differentiators (DDs) with stopbands obtained by minimizing the Lp norm are filters with important practical applications, as they can differentiate input signals without distortion. Stopbands designed by minimizing the Lp norm can be used to control the relationship between the steepness in the transition band and the ripple scale. However, linear phase DDs are unsuitable for real-time processing because each group delay is half of the filter order. In this paper, we proposed a design method for a low-delay maximally flat low-pass/band-pass FIR DDs with stopbands obtained by minimizing the Lp norm. The proposed DDs have low-delay characteristics that approximate the linear phase characteristics only in the passband. The proposed transfer function is composed of two functions, one with flat characteristics in the passband and one that ensures the transfer function has Lp approximated characteristics in the stopband. In the optimization of the latter function, Newton's method is employed.

  • Design of High-ESD Reliability in HV Power pLDMOS Transistors by the Drain-Side Isolated SCRs

    Shen-Li CHEN  Yu-Ting HUANG  Yi-Cih WU  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    446-452

    Improving robustness in electrostatic discharge (ESD) protection by inserting drain-side isolated silicon-controlled rectifiers (SCRs) in a high-voltage (HV) p-channel lateral-diffused MOSFET (pLDMOS) device was investigated in this paper. Additionally, the effects of anti-ESD reliability in the HV pLDMOS transistors provided by this technique were evaluated. From the experimental data, it was determined that the holding voltage (Vh) values of the pLDMOS with an embedded npn-arranged SCR and discrete thin-oxide (OD) layout on the cathode side increased as the parasitic SCR OD row number decreased. Moreover, the trigger voltage (Vt1) and the Vh values of the pLDMOS with a parasitic pnp-arranged SCR and discrete OD layout on the drain side fluctuated slightly as the SCR OD-row number decreased. Furthermore, the secondary breakdown current (It2) values (i.e., the equivalent ESD-reliability robustness) of all pLDMOS-SCR npn-arranged types increased (>408.4%) to a higher degree than those of the pure pLDMOS, except for npn-DIS_3 and npn-DIS_2, which had low areas of SCRs. All pLDMOS-SCR pnp-arranged types exhibited an increase of up to 2.2A-2.4A, except for the pnp_DIS_3 and pnp_DIS_2 samples; the pnp_DIS_91 increased by approximately 2000.9% (249.1%), exhibiting a higher increase than that of the reference pLDMOS (i.e., the corresponding pnp-stripe type). The ESD robustness of the pLDMOS-SCR pnp-arranged type and npn-arranged type with a discrete OD layout on the SCR cathode side was greater than that of the corresponding pLDMOS-SCR stripe type and a pure pLDMOS, particularly in the pLDMOS-SCR pnp-arranged type.

  • A Method for FDOA Estimation with Expansion of RMS Integration Time

    Shangyu ZHANG  Zhen HUANG  Zhenqiang LI  Xinlong XIAO  Dexiu HU  

     
    PAPER-Sensing

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    893-900

    The measurement accuracy of frequency difference of arrival (FDOA) is usually determinant for emitters location system using rapidly moving receivers. The classic technique of expanding the integration time of the cross ambiguity function (CAF) to achieve better performance of FDOA is likely to incur a significant computational burden especially for wideband signals. In this paper, a nonconsecutive short-time CAF's methods is proposed with expansion of root mean square (RMS) integration time, instead of the integration time, and a factor of estimation precision improvement is given which is relative to the general consecutive method. Furthermore, by analyzing the characteristic of coherent CAF and the influence of FDOA rate, an upper bound of the precision improvement factor is derived. Simulation results are provided to confirm the effectiveness of the proposed method.

  • A New and Accurate Method for the Frequency Estimation of Complex Exponential Signals

    Kang WU  Yijun CHEN  Huiling HOU  Wenhao CHEN  Xuwen LIANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1231-1235

    In this letter, a new and accurate frequency estimation method of complex exponential signals is proposed. The proposed method divides the signal samples into several identical segments and sums up the samples belonging to the same segment respectively. Then it utilizes fast Fourier transform (FFT) algorithm with zero-padding to obtain a coarse estimation, and exploits three Fourier coefficients to interpolate a fine estimation based on least square error (LSE) criterion. Numerical results show that the proposed method can closely approach the Cramer-Rao bound (CRB) at low signal-to-noise ratios (SNRs) with different estimation ranges. Furthermore, the computational complexity of the proposed method is proportional to the estimation range, showing its practical-oriented ability. The proposed method can be useful in several applications involving carrier frequency offset (CFO) estimation for burst-mode satellite communications.

  • Non-Coherent MIMO of Per Transmit Antenna Differential Mapping (PADM) Employing Asymmetric Space-Time Mapping and Channel Prediction

    Hiroshi KUBO  Takuma YAMAGISHI  Toshiki MORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    808-817

    This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.

121-140hit(920hit)