The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dipole(61hit)

41-60hit(61hit)

  • A Simple Method for Predicting Common-Mode Radiation from a Cable Attached to a Conducting Enclosure

    Jianqing WANG  Kohji SASABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:7
      Page(s):
    1360-1367

    Common-mode (CM) radiation from a cable attached to a conducting enclosure has a typical dipole-type antenna structure, in which an equivalent noise voltage source located at the connector excites the attached cable against the enclosure to produce radiated emissions. Based on this mechanism, a simple method for predicting the CM radiation from the cable/enclosure structure was proposed. The method combines an equivalent dipole approximation with sinusoidal current distribution and CM current measurement at a specified location on the cable. Its validity was examined in comparison with the far-field measurement and finite-difference time-domain (FDTD) modeling. The predicted resonance frequencies and CM radiation levels were validated with engineering accuracy, i.e., within 30 MHz and 6 dB, respectively, from the measured and FDTD-modeled results in the frequencies above 150 MHz.

  • Estimation of Current Distribution on Cellular Telephone Antennas Affected by Human Body Interaction

    Eiji HANKUI  Takashi HARADA  Toshihide KURIYAMA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:9
      Page(s):
    1260-1263

    This paper describes an estimation method for an antenna current distribution including the interaction between a cellular telephone antenna and a human body. In our experiments, current distributions on a half wavelength dipole antenna at 900 MHz are evaluated by measuring the magnetic field near the antenna, when a human head-sized phantom model is located near the dipole antenna. From the experiments, the antenna current around a feed point is confirmed to increase by 30% due to the interaction effect. This result shows that antennas of portable phones should be designed by considering the effect of a human presence for the development of the higher performance antenna, and our estimation method will contribute to optimizing the design of such antennas.

  • Triple-Bands Broad Bandwidth Dipole Antenna with Multiple Parasitic Elements

    Toru FUKASAWA  Hiroyuki OHMINE  Kazuhito MIYASHITA  Yoshiyuki CHATANI  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2476-2481

    This paper proposes serially arranged two parasitic elements above a fed dipole to obtain broad bandwidth in resonant frequency of a parasitic element. The above antenna can be used in triple-bands with one feed point. Its design method using FDTD is also presented. Next, application of the triple-bands antenna is proposed for 3-sector base station antenna. Its characteristics of return loss and radiation patterns are indicated. Calculated values are in good agreement with measured ones.

  • The Moment Method Analysis as a Simulator Technique for a Dipole Antenna Using Wavelets

    Shigeo KAWASAKI  Harunobu SEITA  Takuo MORIMOTO  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    914-922

    As a solver in a simulator, advantages of use of a wavelet function were investigated for analysis of a dipole antenna using the Moment Method. Realization of a sparse matrix due to orthogonality and due to inherent nature of the wavelet is confirmed by observing an impedance matrix using each Daubechies' wavelet. Calculated results of the input impedance, the impedance matrix, and the current distribution are compared in variation of the wavelet in two integral equations for a dipole antenna. Use of the Daubechies' wavelet of the high number with a small matrix and a threshold in the Hallen's Integral Equation is suitable for the reduction of the matrix size and of the calculation cost.

  • Near-Field Shielding Effect of Oval Human Model for Dipole Antenna Using High-Loss Dielectric and Magnetic Materials

    Shinichiro NISHIZAWA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:11
      Page(s):
    2513-2518

    In this study, the shielding effect of high-loss dielectric and magnetic materials themselves and also an oval human model placed behind these material, were investigated by the FDTD method, for near- and far-field exposure, using the half-wave length dipole antenna. According to the results, a high-loss magnetic material showed a large shielding effect (average 20 dB) compared to the high-loss dielectric material, for near- and far-field shields. Also, the reduction of the shielding effect was small (2 dB) for the high-loss magnetic material, while it was large for the high loss dielectric material, on decreasing the distance between the antenna and shield. Moreover, the variation of the shielding effect on a human model placed behind the shield was small (0.2-1.5 dB) for the high-loss magnetic material, but large for the high-loss dielectric material. This is similar to the results of the shield materials themselves, for the close antenna-shield and human-shield distances, respectively.

  • The Effects of Inhomogeneities on MCG forward Solution

    Jiange G. CHEN  Noboru NIKI  Yoon-Myung KANG  Yutaka NAKAYA  Hiromu NISHITANI  

     
    PAPER-Medical Engineering

      Vol:
    E83-D No:8
      Page(s):
    1687-1697

    The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. It can serve to guide the selection of inhomogeneities to include in any geometric model used to compute magnetocardiographics fields. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: 1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; 2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. When single inhomogeneities were added to an otherwise homogeneous model, the skeletal muscle, the right lung, the both lungs and the left lung had larger average effects (15.9, 15.1, 14.9, 14.4% relative error (RE), respectively) than the other inhomogeneities tested. When single inhomogeneities were removed from an otherwise full inhomogeneneous model, the both lungs, the left lung, and the skeletal muscle and the right lung had larger effects (17.3, 14.9, 14.3, 14.2% relative error (RE) respectively) than other inhomogeneities tested. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

  • Approximate Formulas for Shielding Effectiveness of an Infinite Planar Shield for Dipole Fields

    Yoshifumi AMEMIYA  Takashi YAMAGUCHI  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E81-B No:11
      Page(s):
    2219-2228

    This paper presents a relationship between the near-field shielding effectiveness (SE) and the far-field SE of an infinite planar shield for dipole fields. The penetration fields through the shield and the near-field SE are deduced analytically from an explicit integral expression based on certain assumptions. They further give us approximate formulas for the near-field SE. The near-field SE depends on not only wavelength and material used, but also on the distance r from a source to an observation point through the shield, the source type (magnetic dipole or electric dipole) and the orientation (vertical or horizontal to the shield face) in general. The results we obtained are as follows. The near-field SE for magnetic dipole fields vertical to the shield face is the same as that horizontal to the shield face, and their absolute values equal that of the far-field SE multiplied by k0r/3 (k0 is the wave number). The near-field SE for electric dipole fields vertical to the shield face doubles that horizontal to the shield face, and the absolute value of the latter equals that of the far-fields SE divided by k0r. The validity of the assumptions used to obtain the approximate formulas are examined. The range of r (an application range), over which the difference between the approximate value and the true value is under 1 dB, is determined, where the former value is calculated by the approximate formula of the SE and the latter value is etsimated by direct integration of the related integral expression. For instance, an application range of the approximate formula for magnetic dipole fields vertical to the shield face is from larger one of 50δ and 33µrδ to 0. 11λ0, where µr is specific permeability, δ is skin depth of the shielding material used and λ0 is wavelength in the free space.

  • Phase Control of Circular Polarization from a Slot with a Parasitic Dipole

    Kyeong-Sik MIN  Jiro HIROKAWA  Kimio SAKURAI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:3
      Page(s):
    668-673

    The characteristics of circular polarization from a slot with a parasitic dipole are investigated analytically. It is derived that its phase is linearly dependent upon the angle of the dipole and is independent of that of slot. This interesting behavior is also confirmed by experiments.

  • An Efficient ICT Method for Analysis of Co-planar Dipole Antenna Arrays of Arbitrary Lengths

    Adam Icarus IMORO  Ippo AOKI  Naoki INAGAKI  Nobuyoshi KIKUMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:3
      Page(s):
    659-667

    A more judicious choice of trial functions to implement the Improved Circuit Theory (ICT) application to multi-element antennas is achieved. These new trial functions, based on Tai's modified variational implementation for single element antennas, leads to an ICT implementation applicable to much longer co-planar dipole arrays. The accuracy of the generalized impedance formulas is in good agreement with the method of moments. Moreover, all these generalized formulas including the radiation pattern expressions are all in closed-form. This leads to an ICT implementation which still requires much shorter CPU time and lesser computer storage compared to method of moments. Thus, for co-planar dipole arrays, the proposed implementation presents a relatively very efficient method and would therefore be found useful in applications such as CAD/CAE systems.

  • Nonlinear Coherent Excitonic Solid Gates for Quantum Computation

    Hideaki MATSUEDA  Shozo TAKENO  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1610-1615

    The dipole-dipole interaction among excitons is shown to give rise to an intrinsic nonlinearity, which yields a localized mode in a forbidden band, providing a coherent state for quantum computation. Employing this mode, a quantum XOR (exclusive OR) gate is proposed. A block structure of quantum dot arrays is also proposed, to implement quantum circuits comprising the quantum XOR gates for computation.

  • A Single-Layer Linear-to-Circular Polarization Converter for a Narrow-Wall Slotted Waveguide Array

    Kyeong-Sik MIN  Jiro HIROKAWA  Kimio SAKURAI  Makoto ANDO  Naohisa GOTO  Yasuhiko HARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:8
      Page(s):
    1264-1272

    This paper describes the characteristics of a one dimensional narrow-wall slotted waveguide array with a single-layer linear-to-circular polarization converter consisting of a dipole array. An external boundary value problem of one slot and three dipoles, which approximates the mutual coupling between the dipole array and an edge slot extending over three faces of a rectangular waveguide, is formulated and analyzed by the method of moments; design of polarization conversion is conducted for this model as a unit element. If every unit element has perfect circular polarization, grating lobes appear in the array pattern due to the alternating slot angle: these are suppressed in this paper by changing the dipole angle and degrading the axial ratio of the unit element. The validity of the design is confirmed by the measurements. The dipole array has negligible effects upon slot impedance; the polarization conversion for existing narrow-wall slotted arrays is realized by add-on dipole array.

  • Current Topics of Microwave EMI Antennas and Measurements

    Akira SUGIURA  Nobuo KUWABARA  Takashi IWASAKI  

     
    INVITED PAPER

      Vol:
    E80-B No:5
      Page(s):
    653-662

    This paper reviews recent developments in small-sized broadband antennas for EMI measurements, especially in the microwave frequency region. Transient EMI measurements are also discussed by introducing complex antenna factors and conversion of frequency-domain data into time-domain data. This paper also focuses on considerable improvements achieved in calibration techniques for conventional EMI antennas in VHF/UHF bands.

  • Inverse Filter of Sound Reproduction Systems Using Regularization

    Hironori TOKUNO  Ole KIRKEBY  Philip A. NELSON  Hareo HAMADA  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    809-820

    We present a very fast method for calculating an inverse filter for audio reproduction system. The proposed method of FFT-based inverse filter design, which combines the well-known principles of least squares optimization and regularization, can be used for inverting systems comprising any number of inputs and outputs. The method was developed for the purpose of designing digital filters for multi-channel sound reproduction. It is typically several hundred times faster than a conventional steepest descent algorithm implemented in the time domain. A matrix of causal inverse FIR (finite impulse response) filters is calculated by optimizing the performance of the filters at a large number of discrete frequencies. Consequently, this deconvolution method is useful only when it is feasible in practice to use relatively long inverse filters. The circular convolution effect in the time domain is controlled by zeroth-order regularization of the inversion problem. It is necessary to set the regularization parameter β to an appropriate value, but the exact value of β is usually not critical. For single-channel systems, a reliable numerical method for determining β without the need for subjective assessment is given. The deconvolution method is based on the analysis of a matrix of exact least squares inverse filters. The positions of the poles of those filters are shown to be particularly important.

  • Radiation Fields of a Printed-Dipole on a Semi-Infinite Substrate

    Tomotaka WADA  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E79-A No:11
      Page(s):
    1860-1861

    The printed dipole on a semi-infinite substrate is investigated. The solution is based on the moment method in the Fourier transform domain. We analyze far-field and near-field radiation patterns for a printed dipole. Therefore, we make radiation fields clear.

  • Spectral Features due to Dipole-Dipole Interactions in Optical Harmonic Generation

    Hideaki MATSUEDA  Shozo TAKENO  

     
    PAPER-Control and Optics

      Vol:
    E79-A No:10
      Page(s):
    1707-1712

    The dipole-dipole interaction in the quantum mechanical treatment of the matter-radiation dynamics, is shown to give rise to split energy levels reminiscent of the nonlinear coupled spectral features as well as a self-sustained coherent modes. Wiener's theory of nonlinear random processes is applied to the second harmonic generation (SHG), leading also to coupled spectral pulling and dipping features, due to the dual noise sources in the fundamental and the harmonic polarizations. Furthermore, the nonlinear spectral features are suggested to be applied to implement quantum (qubit) gates for computation.

  • A Beam Tilt Dipole Array Antenna for Indoor Mobile Applications

    Koichi OGAWA  Tomoki UWANO  

     
    PAPER-Passive Devices

      Vol:
    E79-C No:5
      Page(s):
    685-692

    A new beam tilt dipole array antenna in a simple structuer has been developed for indoor base stations in the 1.9 GHz band. The antenna comprises a radiator and skewed off-center parasitic elements placed around the radiator. With this stucture, the main beam of the array antenna can be tilted for mobile terminals reception by the effect of mutual coupling. Studies on tilt characteristics for antenna dimensions and tilt mechanism by precise current measurements have clarified the operating principle. The antennas with a fan beam and an omnidirectional pattern have been designed. The measured tilt angle was varied in the range of 0 to 26 with little alteration of the horizontal radiation patterns.

  • EMI Dipole Antenna Factors

    Akira SUGIURA  Takao MORIKAWA  Teruo TEJIMA  Hiroshi MASUZAWA  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    134-139

    Theoretical and experimental investigations of dipole antenna factors were carried out with special interest in their height patterns, since difference between them is a main cause of disagreement in EMI measurement results obtained with different antennas types. Antenna factors were expressed by matrix representation and their dependence on antenna dimensions and balun construction were numerically evaluated with the moment method. Those analyses revealed that antenna dimensions and balun characteristics have little effect on antenna factor height patterns. Slight influence was observed only at frequencies around 30MHz, when an antenna was placed less than 1.5m above a metal ground plane.

  • Measurement of Antenna Factor of Dipole Antennas on a Ground Plane by 3-Antenna Method

    Hitoshi IIDA  Shinobu ISHIGAMI  Ichiro YOKOSHIMA  Takashi IWASAKI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    260-267

    The antenna factor measurement of the dipole antennas for electromagnetic interference (EMI) measurements is studied theoretically and experimentally. The 3-antenna method is applied to near-field. Near-field transmission characteristics between the transmitting and receiving dipole antennas is obtained by using the electromotive force (EMF) method, where sinusoidal current distributions are assumed. It is shown that the antenna factors can be measured from transmission values between two antennas and near-field correction factors at any height of each antenna.

  • Electromagnetic Fields of Dipoles Effected by a Semi-Infinite Media

    Akira YOKOYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:1
      Page(s):
    56-63

    Expressions for electromagnetic fields generated by vertical and horizontal electric dipoles located in the air or in a lossy half-space near its boundary with air are obtained from Hertz vectors by the method of operators under the condition |n|31, where 1/n is the refractive constant of the lossy space. These can be applied up to the near fields under the additional conditions, |n|21 and cos2θ1, where θ is the zenith angle of the point of observation. As for recent works inclusive of expressions of lateral waves their weak points are pointed out.

  • Analysis of Transient Electromagnetic Fields Radiated by Electrostatic Discharges

    Osamu FUJIWARA  Norio ANDOH  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E76-B No:11
      Page(s):
    1478-1480

    For analyzing the transient electromagnetic fields caused by electrostatic discharge (ESD), a new ESD model is presented here. Numerical calculation is also given to explain the distinctive phenomenon being well-recognized in the ESD event.

41-60hit(61hit)