The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dynamic voltage and frequency scaling(9hit)

1-9hit
  • A Two-Phase Algorithm for Reliable and Energy-Efficient Heterogeneous Embedded Systems Open Access

    Hongzhi XU  Binlian ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1285-1296

    Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.

  • Approximation-Based System Implementation for Real-Time Minimum Energy Point Tracking over a Wide Operating Performance Region

    Shoya SONODA  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2022/10/07
      Vol:
    E106-A No:3
      Page(s):
    542-550

    This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). This paper proposes an approximation-based implementation method for an MEP tracking system over a wide voltage region. This paper focuses on the MEP characteristics that the energy loss is sufficiently small even though the voltage point changes near the MEP. For example, the energy loss is less than 5% even though the estimated MEP differs by a few tens of millivolts in comparison with the actual MEP. Therefore, the complexity for determining the MEP is relaxed by approximating complex operations such as the logarithmic or the exponential functions in the MEP tracking algorithm, which leads to hardware-/software-efficient implementation. When the MEP tracking algorithm is implemented in software, the MEP estimation time is reduced from 1ms to 13µs by the proposed approximation. When implemented in hardware, the proposed method can reduce the area of an MEP estimation circuit to a quarter. Measurement results of a 32-bit RISC-V processor fabricated in a 65-nm SOTB process technology show that the energy loss introduced by the proposed approximation is less than 2% in comparison with the MEP operation. Furthermore, we show that the MEP can be tracked within about 45 microseconds by the proposed MEP tracking system.

  • Approximate Minimum Energy Point Tracking and Task Scheduling for Energy-Efficient Real-Time Computing

    Takumi KOMORI  Yutaka MASUDA  Jun SHIOMI  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2021/09/06
      Vol:
    E105-A No:3
      Page(s):
    518-529

    In the upcoming Internet of Things era, reducing energy consumption of embedded processors is highly desired. Minimum Energy Point Tracking (MEPT) is one of the most efficient methods to reduce both dynamic and static energy consumption of a processor. Previous works proposed a variety of MEPT methods over the past years. However, none of them incorporate their algorithms with practical real-time operating systems, although edge computing applications often require low energy task execution with guaranteeing real-time properties. The difficulty comes from the time complexity for identifying an MEP and changing voltages, which often prevents real-time task scheduling. The conventional Dynamic Voltage and Frequency Scaling (DVFS) only scales the supply voltage. On the other hand, MEPT needs to adjust the body bias voltage in addition. This additional tuning knob makes MEPT much more complicated. This paper proposes an approximate MEPT algorithm, which reduces the complexity of identifying an MEP down to that of DVFS. The key idea is to linearly approximate the relationship between the processor frequency, supply voltage, and body bias voltage. Thanks to the approximation, optimal voltages for a specified clock frequency can be derived immediately. We also propose a task scheduling algorithm, which adjusts processor performance to the workload and then provides a soft real-time capability to the system. The operating system stochastically adjusts the average response time of the processor to be equal to a specified deadline. MEPT will be performed as a general task, and its overhead is considered in the calculation of the frequency. The experiments using a fabricated test chip and on-chip sensors show that the proposed algorithm is a maximum of 16 times more energy-efficient than DVFS. Also, the energy loss induced by the approximation is only 3% at most, and the algorithm does not sacrifice the fundamental real-time properties.

  • Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region

    Shoya SONODA  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1566-1576

    A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.

  • Quantized Decoder Adaptively Predicting both Optimum Clock Frequency and Optimum Supply Voltage for a Dynamic Voltage and Frequency Scaling Controlled Multimedia Processor

    Nobuaki KOBAYASHI  Tadayoshi ENOMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:8
      Page(s):
    671-679

    To completely utilize the advantages of dynamic voltage and frequency scaling (DVFS) techniques, a quantized decoder (QNT-D) was developed. The QNT-D generates a quantized signal processing quantity (Q) using a predicted signal processing quantity (M). Q is used to produce the optimum frequency (opt.fc) and the optimum supply voltage (opt.VD) that are proportional to Q. To develop a DVFS controlled motion estimation (ME) processor, we used both the QNT-D and a fast ME algorithm called A2BC (Adaptively Assigned Breaking-off Condition) to predict M for each macro-block (MB). A DVFS controlled ME processor was fabricated using 90-nm CMOS technology. The total power dissipation (PT) of the processor was significantly reduced and varied from 38.65 to 99.5 µW, only 3.27 to 8.41 % of PT of a conventional ME processor, depending on the test video picture.

  • A Minimum Energy Point Tracking Algorithm Based on Dynamic Voltage Scaling and Adaptive Body Biasing

    Shu HOKIMOTO  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2776-2784

    Scaling the supply voltage (Vdd) and threshold voltage (Vth) for minimizing the energy consumption of processors dynamically is highly desired for applications such as wireless sensor network and Internet of Things (IoT). In this paper, we refer to the pair of Vdd and Vth, which minimizes the energy consumption of the processor under a given operating condition, as a minimum energy point (MEP in short). Since the MEP is heavily dependent on an operating condition determined by a chip temperature, an activity factor, a process variation, and a performance required for the processor, it is not very easy to closely track the MEP at runtime. This paper proposes a simple but effective algorithm for dynamically tracking the MEP of a processor under a wide range of operating conditions. Gate-level simulation of a 32-bit RISC processor in a 65nm process demonstrates that the proposed algorithm tracks the MEP under a situation that operating condition widely vary.

  • A Necessary and Sufficient Condition of Supply and Threshold Voltages in CMOS Circuits for Minimum Energy Point Operation

    Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2764-2775

    Scaling supply voltage (VDD) and threshold voltage (Vth) dynamically has a strong impact on energy efficiency of CMOS LSI circuits. Techniques for optimizing VDD and Vth simultaneously under dynamic workloads are thus widely investigated over the past 15 years. In this paper, we refer to the optimum pair of VDD and Vth, which minimizes the energy consumption of a circuit under a specific performance constraint, as a minimum energy point (MEP). Based on the simple transregional models of a CMOS circuit, this paper derives a simple necessary and sufficient condition for the MEP operation. The simple condition helps find the MEP of CMOS circuits. Measurement results using standard-cell based memories (SCMs) fabricated in a 65-nm process technology also validate the condition derived in this paper.

  • Applying Razor Flip-Flops to SRAM Read Circuits

    Ushio JIMBO  Junji YAMADA  Ryota SHIOYA  Masahiro GOSHIMA  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    245-258

    Timing fault detection techniques address the problems caused by increased variations on a chip, especially with dynamic voltage and frequency scaling (DVFS). The Razor flip-flop (FF) is a timing fault detection technique that employs double sampling by the main and shadow FFs. In order for the Razor FF to correctly detect a timing fault, not the main FF but the shadow FF must sample the correct value. The application of Razor FFs to static logic relaxes the timing constraints; however, the naive application of Razor FFs to dynamic precharged logic such as SRAM read circuits is not effective. This is because the SRAM precharge cannot start before the shadow FF samples the value; otherwise, the transition of the bitline of the SRAM stops and the value sampled by the shadow FF will be incorrect. Therefore, the detect period cannot overlap the precharge period. This paper proposes a novel application of Razor FFs to SRAM read circuits. Our proposal employs a conditional precharge according to the value of a bitline sampled by the main FF. This enables the detect period to overlap the precharge period, thereby relaxing the timing constraints. The additional circuit required by this method is simple and only needed around the sense amplifier, and there is no need for a clock delayed from the system clock. Consequently, the area overhead of the proposed circuit is negligible. This paper presents SPICE simulations of the proposed circuit. Our proposal reduces the minimum cycle time by 51.5% at a supply voltage of 1.1 V and the minimum voltage by 31.8% at cycle time of 412.5 ps.

  • An On-Chip Noise Canceller with High Voltage Supply Lines for Nanosecond-Range Power Supply Noise

    Yasumi NAKAMURA  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    468-474

    An on-chip power supply noise canceller with higher voltage supply and switching transistor is proposed and the effectiveness of the canceller is experimentally verified. The noise canceller is effective for nano-second order noise caused by circuit wakeup or step increase of frequency in frequency hopping. The principle of the noise canceller is to reduce the current flowing through the supply line of VDD by injecting additional current from the higher voltage supply, so that the voltage drop across the VDD supply line is reduced. As additional current flow from higher supply, switching transistor has to be turned off not to increase the power consumption. With turn-off time of 2L/R, this current can be turned off without inducting another droop due to the increase of current flowing through the power supply line. The measurement shows the canceller reduces 68% of the noise with load circuit equivalent to 530 k logic gates in 90-nm CMOS with 9% wire overhead, 1.5% area overhead, and 3% power overhead at 50 k wake-ups/s. Compared to passive noise reduction, proposed noise canceller reduces power supply noise by 64% without wire overhead and to achieve same noise reduction with passive method, 77 times more C or 45 times less L is required. Too large switching transistor results in saturated noise reduction effect and higher power consumption. A rule-of-thumb is to set the on-resistance to supply 100% of load current when turned-on.