The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] edge(512hit)

421-440hit(512hit)

  • Software Creation: An Intelligent CASE Tool Featuring Automatic Design for Structured Programming

    Hui CHEN  Nagayasu TSUTSUMI  Hideki TAKANO  Zenya KOONO  

     
    PAPER-Application

      Vol:
    E81-D No:12
      Page(s):
    1439-1449

    This paper reports on an Intelligent CASE tool, applicable in a structured programming phase, or from detailed design to coding. This is automation of the bottom level in the hierarchical design process of detailed design and coding, where the largest man-hours are consumed. The main idea is that human designers use a CASE tool for the initial design of a software system, and the design knowledge is automatically acquired from the structured charts and stored in the knowledge base. The acquired design knowledge may be reused in designs. By reusing it, a similar software system may be designed automatically. It has been shown that knowledge acquired in this way has a Logarithmic Learning Effect. Based on this, a quantitative evaluation of productivity is made. By accumulating design experiences (e. g. 10 times), more than 80% of the detailing designs are performed automatically, and productivity increases by up to 4 times. This tool features universality, an essentially zero start-up cost for automatic design, and a substantial increase in software productivity after enough experiences have been accumulated. This paper proposes a new basic idea and its implementation, a quantitative evaluation applying techniques from Industrial Engineering, which proves the effectiveness of the proposed system.

  • Improving Fairness and Stability in Best-Effort Service: A New Congestion Control Algorithm for SACK-TCP

    Yukio ATSUMI  Eiichi KONDOH  Onur ALTINTA  Teruaki YOSHIDA  

     
    PAPER-IP Networks

      Vol:
    E81-B No:11
      Page(s):
    2023-2033

    In order to improve fairness and stability of TCP best-effort service we propose a new congestion control algorithm using packet loss information obtained from Selective Acknowledgments (SACK), and evaluate its effectiveness by simulation. The proposed scheme is for an environment consisting of Random Early Detection (RED) routers which drop each arriving packet with a certain probability after a threshold. The proposed mechanism adjusts the decrease in congestion window for Fast Recovery and the increase in congestion window per ACK during the congestion avoidance phase according to the number of lost packets. Simulation results show that not only the bandwidth allocation fairness is improved but also throughput deviation is markedly reduced resulting in more stable transport capability.

  • Ramp-Edge Josephson Junctions Using Barriers of Various Resistivities

    Masahiro HORIBE  Koh-ichi KAWAI  Akira FUJIMAKI  Hisao HAYAKAWA  

     
    INVITED PAPER-High-Tc Junction Technology

      Vol:
    E81-C No:10
      Page(s):
    1526-1531

    We have studied the effect of Ga and Ca substitution in the PrBa2Cu3Oδ (PBCO) barrier on the parameters of high-temperature-superconductor ramp-edge Josephson junctions. Pr 1-XCa XBa2Cu3Oδ (X=0. 15, 0. 3) had reduced bulk barrier resistivity as small as 10 mΩcm which was close to the metal-insulator transition. Also, PrBa2Cu 3-ZGa ZOδ, written as GaZ-doped PBCO (Z=0. 15, 0. 3, 0. 6), had enhanced resistivity neater than 1 kΩcm at 4. 2 K. The transport mechanisms in these bulk barriers fitted well with the Mott variable hopping model. The critical current density Jc and normalized junction conductance (R nA)-1 decayed exponentially with almost the same decay length, as the barrier thickness increased. The decay length depended on the barrier material, and ranged from 1. 7 nm to 6. 5 nm for Jc, from 1. 9 nm to 7. 2 nm for (Rn A)-1. Because on these experimental results, we conclude that direct tunneling is the dominant transport mechanism for both quasi particles and paired particles in our junctions, while resonant tunneling should be considered as an additional transport mechanism of these two kinds of particles in the junctions with the PBCO-based barriers reported so far. It was also found that Ga doping raised the characteristic voltage Vc while Ca doping reduced it, though the Vc values obtained here were still small compared to the theoretically predicted values. The spacewise metal insulator transition at the interfaces caused by a high density of localized states in the barriers seemed to be responsible for the reduction in Vc. The best Vc value was 0. 32 mV at 77 K and 5. 2 mV at 4. 2 K using a Ga0. 6-PBCO barrier. These Vc values are suitable for electronics applications. Furthermore, superconducting-gap-like structures were observed in the junctions with highly resistive Ga-doped PBCO barriers.

  • Wedge-Supported Cylindrical Microstrip Lines with an Indented Ground

    Jean-Fu KIANG  Chung-I G. HSU  Ching-Her LEE  

     
    PAPER-Electromagnetic Theory

      Vol:
    E81-C No:8
      Page(s):
    1358-1365

    A combined mode-matching and moment method is proposed to calculate the capacitance matrix of wedge-supported cylindrical microstrip lines with an indented ground. Each indent is modeled as a multilayered medium in which the potential distribution is systematically derived by defining reflection matrices. An integral equation is derived in terms of the charge distribution on the strip surfaces. Galerkin's method is then applied to solve the integral equation for the charge distribution. The effects of strip width, strip separation, indent depth, and indent shape are analyzed.

  • Performance Analysis of Generalized Order Statistic Cell Averaging CFAR Detector with Noncoherent Integration

    Kyung-Tae JUNG  Hyung-Myung KIM  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:6
      Page(s):
    1201-1209

    We propose a Generalized Order Statistic Cell Averaging (GOSCA) CFAR detector. The weighted sums of the order statistics in the leading and lagging reference windows are utilized for the background level estimate. The estimate is obtained by averaging the weighted sums. By changing the weighting values, various CFAR detectors are obtained. The main advantage of the proposed GOSCA CFAR detector over the GOS CFAR detector is to reduce a computational time which is critical factor for the real time operation. We also derive unified formulas of the GOSCA CFAR detector under the noncoherent integration scheme. For Swerling target cases, performances of various CFAR detectors implemented using the GOSCA CFAR detector are derived and compared in homogeneous environment, and in the case of multiple targets and clutter edges situations.

  • Knowledge-Based Enhancement of Low Spatial Resolution Images

    Xiao-Zheng LI  Mineichi KUDO  Jun TOYAMA  Masaru SHIMBO  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:5
      Page(s):
    457-463

    Many image-processing techniques are based on texture features or gradation features of the image. However, Landsat images are complex; they also include physical features of reflection radiation and heat radiation from land cover. In this paper, we describe a method of constructing a super-resolution image of Band 6 of the Landsat TM sensor, oriented to analysis of an agricultural area, by combining information (texture features, gradation features, physical features) from other bands. In this method, a knowledge-based hierarchical classifier is first used to identify land cover in each pixel and then the least-squares approach is applied to estimate the mean temperature of each type of land cover. By reassigning the mean temperature to each pixel, a finer spatial resolution is obtained in Band 6. Computational results show the efficiency of this method.

  • Requirements Specification and Analysis of Digital Systems Using FARHDL

    Victor R. L. SHEN  Feng-Ho KUO  Feipei LAI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E81-D No:3
      Page(s):
    317-328

    As expert system technology gains wider acceptance in digital system design, the need to build and maintain a large scale knowledge base will assume greater importance. However, how to build a correct and efficient rule base is even a hard part in the knowledge-based system development. In this paper, we develop FARHDL (Frame-And-Rule-based Hardware Description Language) to form a knowledge base. The FARHDL is simple but powerful to specify the hardware requirements and can be directly simulated by PROLOG. Through the knowledge base transformed from FARHDL, a formal method can be developed to design, implement, and validate the digital hardware systems. Furthermore, behavioral properties, anomaly properties, structural properties, and timing properties are applied to analyze the requirements specification. The purposes of those properties are used to detect explicit/implicit incorrect specification clauses and to capture some desired requirements, such as completeness and consistency. Finally, the analysis results can be a useful tool for finding obscure problems in tricky digital system designs and can also aid in the development of formal specifications.

  • Generalized Edge-Rankings of Trees

    Xiao ZHOU  Md. Abul KASHEM  Takao NISHIZEKI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E81-A No:2
      Page(s):
    310-320

    In this paper we newly define a generalized edge-ranking of a graph G as follows: for a positive integer c, a c-edge-ranking of G is a labeling (ranking) of the edges of G with integers such that, for any label i, deletion of all edges with labels >i leaves connected components, each having at most c edges with label i. The problem of finding an optimal c-edge-ranking of G, that is, a c-edge-ranking using the minimum number of ranks, has applications in scheduling the manufacture of complex multi-part products; it is equivalent to finding a c-edge-separator tree of G having the minimum height. We present an algorithm to find an optimal c-edge-ranking of a given tree T for any positive integer c in time O(n2log Δ), where n is the number of vertices in T and Δ is the maximum vertex-degree of T. Our algorithm is faster than the best algorithm known for the case c=1.

  • Security of the Extended Fiat-Shamir Schemes

    Kazuo OHTA  Tatsuaki OKAMOTO  

     
    PAPER

      Vol:
    E81-A No:1
      Page(s):
    65-71

    Fiat-Shamir's identification and signature scheme is efficient as well as provably secure, but it has a problem in that the transmitted information size and memory size cannot simultaneously be small. This paper proposes an identification and signature scheme which overcomes this problem. Our scheme is based on the difficulty of extracting theL-th roots modn (e. g.L=2 1020) when the factors ofnare unknown. We prove that the sequential version of our scheme is a zero knowledge interactive proof system and our parallel version reveals no transferable information if the factoring is difficult. The speed of our scheme's typical implementation is at least one order of magnitude faster than that of the RSA scheme and is relatively slow in comparison with that of the Fiat-Shamir scheme.

  • One-Time Zero-Knowledge Authentications and Their Applications to Untraceable Electronic Cash

    Tatsuaki OKAMOTO  Kazuo OHTA  

     
    PAPER

      Vol:
    E81-A No:1
      Page(s):
    2-10

    In this paper, we propose a new type of authentication system, one-time zero-knowledge authentication system. Informally speaking, in this authentication system, double usage of the same authentication is prevented. Based on these one-time zero-knowledge authentication systems, we propose a new untraceable electronic cash scheme satisfying both untraceability and unreusablity. This scheme overcomes the problems of the previous scheme proposed by Chaum, Fiat and Naor through its greater efficiency and provable security under reasonable cryptographic assumptions. We also propose a scheme, transferable untraceable electronic cash scheme, satisfying transferability as well as the above two criteria. Moreover, we also propose a new type of electronic cash, untraceable electronic coupon ticket, in which the value of one piece of the electronic cash can be subdivided into many pieces.

  • High-Speed Similitude Retrieval for a Viewpoint-Based Similarity Discrimination System

    Takashi YUKAWA  Kaname KASAHARA  Kazumitsu MATSUZAWA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E80-D No:12
      Page(s):
    1215-1220

    This paper proposes high-speed similitude retrieval schemes for a viewpoint-based similarity discrimination system (VB-SDS) and presents analytical and experimental performance evaluations. The VB-SDS, which contains a huge set of semantic definitions of commonly used words and computes semantic similarity between any two words under a certain viewpoint, promises to be a very important module in analogical and case-based reasoning systems that provide solutions under uncertainty. By computing and comparing similarities for all words contained in the system, the most similar word for a given word can be retrieved under a given viewpoint. However, the time this consumes makes the VB-SDS unsuitable for inference systems. The proposed schemes reduce search space based on the upper bound of a similarity calculation function to increase retrieval speed. An analytical evaluation shows the schemes can achieve a thousand-fold speedup and confirmed through experimental results for a VB-SDS containing about 40,000 words.

  • H-Polarized Diffraction by a Wedge Consisting of Perfect Conductor and Lossless Dielectric

    Se-Yun KIM  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1407-1413

    The H-polarized diffraction by a wedge consisting of perfect conductor and lossless dielectric is investigated by employing the dual integral equations. Its physical optics diffraction coefficients are expressed in a finite series of cotangent functions weighted by the Fresnel reflection coefficients. A correction rule is extracted from the difference between the diffraction coefficients of the physical optics field and those of the exact solution to a perfectly conducting wedge. The angular period of the cotangent functions is changed to satisfy the edge condition at the tip of the wedge, and the poles of the cotangent functions are relocated to cancel out the incident field in the artificially complementary region. Numerical results assure that the presented correction is highly effective for reducing the error posed in the physical optics solution.

  • A Note on Bicomplex Representation for Electromagnetic Fields in Scattering and Diffraction Problems and Its High-Frequency and Low-Frequency Approximations

    Masahiro HASHIMOTO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1448-1456

    A bicomplex representation for time-harmonic electromagnetic fields appearing in scattering and diffraction problems is given using two imaginary units i and j. Fieldsolution integral-expressions obtained in the high-frequency and low-frequency limits are shown to provide the new relation between high-frequency diffraction and low-frequency scattering. Simple examples for direct scattering problems are illustrated. It may also be possible to characterize electric or magnetic currents induced on the obstacle in terms of geometrical optics far-fields. This paper outlines some algebraic rules of bicomplex mathematics for diffraction or scattering fields and describes mathematical evidence of the solutions. Major discussions on the relationship between high-frequency and low-frequency fields are relegated to the companion paper which will be published in another journal.

  • Scattering and Diffraction of a Plane Wave by a Randomly Rough Half-Plane: Evaluation of the Second-Order Perturbation

    Yasuhiko TAMURA  Junichi NAKAYAMA  Kazuteru KOMORI  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1381-1387

    This paper deals with the scattering and diffraction of a plane wave by a randomly rough half-plane by three tools: the small perturbation method, the Wiener-Hopf technique and a group theoretic consideration based on the shift-invariance of a homogeneous random surface. For a slightly rough case, the scattered wavefield is obtained up to the second-order perturbation with respect to the small roughness parameter and represented by a sum of the Fresnel integrals with complex arguments, integrals along the steepest descent path and branch-cut integrals, which are evaluated numerically. For a Gaussian roughness spectrum, intensities of the coherent and incoherent waves are calculated in the region near the edge and illustrated in figures, in terms of which several characteristics of scattering and diffraction are discussed.

  • A High-Tc Superconductor Josephson Sampler

    Mutsuo HIDAKA  Tetsuro SATOH  Hirotaka TERAI  Shuichi TAHARA  

     
    INVITED PAPER

      Vol:
    E80-C No:10
      Page(s):
    1226-1232

    This is a review of our high-Tc superconductor (HTS) sampler development. The design and experimental demonstration of a Josephson sampler circuit based on YBa2 Cu3Ox(YBCO)/PrBa2Cu3Ox/YBCO ramp-edge junctions is described. The sampler circuit contains five edge junctions with a stacked YBCO groundplane and is based on single-flux quantum (SFQ) operations. Computer simulation results show that the time resolution of the sampler circuit depends strongly on the IcRn product of the junction and can be reduced to a few picoseconds with realistic parameter values. The edge junctions were fabricated using an in-situ process in which a barrier and a counter-electrode layer are deposited immediately after the edge etching without breaking the vacuum. The in-situ process improved the critical current uniformity of the junctions to 1σ20% in twelve 4-µm-width junctions. An YBCO groundplane was placed on the junctions in a multilayer structure we call the HUG (HTS cricuit with an upper-layer groundplane) structure. The inductance of YBCO lines was reduced to 1 pH per square without junction-quality degradation in the HUG structure. SFQ current-pulse generation, SFQ storage, and SFQ readout in the circuit have been confirmed by function tests using 3-kHz pulse currents. The successful operation of the sampler circuit has been demonstrated by measuring a signal-current waveform at 50K.

  • A Contour-Based Part Segmentation Algorithm

    Mohammed BENNAMOUN  Boualem BOASHASH  

     
    PAPER-Image Theory

      Vol:
    E80-A No:8
      Page(s):
    1516-1521

    Within the framework of a previously proposed vision system, a new part-segmentation algorithm, that breaks an object defined by its contour into its constituent parts, is presented. The contour is assumed to be obtained using an edge detector. This decomposition is achieved in two stages. The first stage is a preprocessing step which consists of extracting the convex dominant points (CDPs) of the contour. For this aim, we present a new technique which relaxes the compromise that exists in most classical methods for the selection of the width of the Gaussian filter. In the subsequent stage, the extracted CDPs are used to break the object into convex parts. This is performed as follows: among all the points of the contour only the CDPs are moved along their normals nutil they touch another moving CDP or a point on the contour. The results show that this part-segmentation algorithm is invariant to transformations such as rotation, scaling and shift in position of the object, which is very important for object recognition. The algorithm has been tested on many object contours, with and without noise and the advantages of the algorithm are listed in this paper. Our results are visually similar to a human intuitive decomposition of objects into their parts.

  • A Probabilistic Approach for Automatic Parameters Selection for the Hybrid Edge Detector

    Mohammed BENNAMOUN  Boualem BOASHASH  

     
    PAPER

      Vol:
    E80-A No:8
      Page(s):
    1423-1429

    We previously proposed a robust hybrid edge detector which relaxes the trade off between robustess against noise and accurate localization of the edges. This hybrid detector separates the tasks of localization and noise suppresion between two sub-detectors. In this paper, we present an extension to this hybrid detector to determine its optimal parameters, independently of the scene. This extension defines a probabilistic cost function using for criteria the probability of missing an edge buried in noise and the probability of detecting false edges. The optimization of this cost function allows the automatic selection of the parameters of the hybrid edge detector given the height of the minimum edge to be detected and the variance of the noise, σ2n. The results were applied to the 2D case and the performance of the adaptive hybrid detector was compared to other detectors.

  • A Uniform Asymptotic Expression for the Function Arising in the Wedge Scattering Problem

    Masao KODAMA  Hideomi TAKAHASHI  Kengo TAIRA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E80-C No:6
      Page(s):
    831-833

    Scattering of a plane electromagnetic wave by a conducting wedge will be discussed. The former solution can not be applicable to all the transition regions when its parameter is constant. This study shows a new solution which consists of only one expression applicable to the shadow region, the illuminated region and the transition regions, and which has no parameter.

  • Current Progress in Epitaxial Layer Transfer (ELTRAN(R))

    Kiyofumi SAKAGUCHI  Nobuhiko SATO  Kenji YAMAGATA  Tadashi ATOJI  Yasutomo FUJIYAMA  Jun NAKAYAMA  Takao YONEHARA  

     
    INVITED PAPER-Wafer Technologies

      Vol:
    E80-C No:3
      Page(s):
    378-387

    The quality of ELTRAN wafers has been improved by pre-injection in epitaxial growth, surface treatment just before bonding, high temperature annealing at bonding, high selective etching and hydrogen annealing. The pre-injection reduces defects. The surface treatment eliminates edge-voids. The high temperature bonding dramatically reduces voids all over the wafer. Hydrogen annealing is very effective for surface flattening and boron out-diffusion. In particular, the edge-void elimination by the surface treatment just before bonding is greatly effective for enlarging the SOI area and reduces the edge exclusion down to only two mm. The gate oxide integrity is well evaluated. This process promises high yield and through-put, because each of the steps can be independently optimized.

  • Height and Reliability of Edges

    Takahiro SUGIYAMA  Keiichi ABE  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:3
      Page(s):
    382-389

    Many different edge detectors have been proposed. Most of them output the edge intensity and the edge orientation as edge features. In this paper we state necessity of a measure which can discriminate a clear edge with small edge height from a noisy edge with large edge height. To find such a measure as an edge feature, we analyze variances within a window around the edge and propose an edge-feature extractor based on this analysis. Then it is noticed that the traditional edge intensity can be considered as two elements: edge height and edge reliability. In multiple edge cases, the condition is clarified for calculating accurate edge locations by analyzing the edge-height function. From this analysis we suggest a method for determining edge points by thresholding edge height. Our detector is compared to Canny's detector both in synthetic models and in a real image and it is demonstrated that our method produces better results in edge locations than Canny's. We also show that our method can detect edges with low edge height and high edge reliability.

421-440hit(512hit)