The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] estimation method(9hit)

1-9hit
  • Method for Estimating Scatterer Information from the Response Waveform of a Backward Transient Scattering Field Using TD-SPT Open Access

    Keiji GOTO  Toru KAWANO  Munetoshi IWAKIRI  Tsubasa KAWAKAMI  Kazuki NAKAZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:8
      Page(s):
    210-222

    This paper proposes a scatterer information estimation method using numerical data for the response waveform of a backward transient scattering field for both E- and H-polarizations when a two-dimensional (2-D) coated metal cylinder is selected as a scatterer. It is assumed that a line source and an observation point are placed at different locations. The four types of scatterer information covered in this paper are the relative permittivity of a surrounding medium, the relative permittivity of a coating medium layer and its thickness, and the radius of a coated metal cylinder. Specifically, a time-domain saddle-point technique (TD-SPT) is used to derive scatterer information estimation formulae from the amplitude intensity ratios (AIRs) of adjacent backward transient scattering field components. The estimates are obtained by substituting the numerical data of the response waveforms of the backward transient scattering field components into the estimation formulae and performing iterative calculations. Furthermore, a minimum thickness of a coating medium layer for which the estimation method is valid is derived, and two kinds of applicable conditions for the estimation method are proposed. The effectiveness of the scatterer information estimation method is verified by comparing the estimates with the set values. The noise tolerance and convergence characteristics of the estimation method and the method of controlling the estimation accuracy are also discussed.

  • Estimation Method of the Number of Targets Using Cooperative Multi-Static MIMO Radar

    Nobuyuki SHIRAKI  Naoki HONMA  Kentaro MURATA  Takeshi NAKAYAMA  Shoichi IIZUKA  

     
    PAPER-Sensing

      Pubricized:
    2021/06/04
      Vol:
    E104-B No:12
      Page(s):
    1539-1546

    This paper proposes a method for cooperative multi-static Multiple Input Multiple Output (MIMO) radar that can estimate the number of targets. The purpose of this system is to monitor humans in an indoor environment. First, target positions within the estimation range are roughly detected by the Capon method and the mode vector corresponding to the detected positions is calculated. The mode vector is multiplied by the eigenvector to eliminate the virtual image. The spectrum of the evaluation function is calculated from the remaining positions, and the number of peaks in the spectrum is defined as the number of targets. Experiments carried out in an indoor environment confirm that the proposed method can estimate the number of targets with high accuracy.

  • Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts Open Access

    Hiroyasu ISHIKAWA  Yuki HORIKAWA  Hideyuki SHINONAGA  

     
    PAPER

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:10
      Page(s):
    1069-1077

    In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.

  • Estimation of Subjective Image Quality for Combinations of Display Physical Factors Based on the Mahalanobis-Taguchi System

    Yusuke AMANO  Gosuke OHASHI  Shogo MORI  Kazuya SAWADA  Takeshi HOSHINO  Yoshifumi SHIMODAIRA  

     
    LETTER

      Vol:
    E98-A No:8
      Page(s):
    1743-1746

    The present study proposes a method for estimation of subjective image quality, for combinations of display physical factors, based on the Mahalanobis-Taguchi system in the field of quality engineering. The proposed method estimates subjective image quality by the estimated equation based on the Mahalanobis-Taguchi System and subjective evaluation experiments using the method of successive categories for images of which parameters are combinations of gamma, maximum luminance and minimum luminance. The estimated image quality is in good agreement with the experimental subjective image quality.

  • A TMR Mitigation Method Based on Readback Signal in Bit-Patterned Media Recording

    Wiparat BUSYATRAS  Chanon WARISARN  Lin M. M. MYINT  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:8
      Page(s):
    892-898

    Track mis-registration (TMR) is one of the major problems in high-density magnetic recording systems such as bit-patterned media recording (BPMR). In general, TMR results from the misalignment between the center of the read head and that of the main track, which can deteriorate the system performance. Although TMR can be handled by a servo system, this paper proposes a novel method to alleviate the TMR effect, based on the readback signal. Specifically, the readback signal is directly used to estimate a TMR level and is then further processed by the suitable target and equalizer designed for such a TMR level. Simulation results indicate that the proposed method can sufficiently estimate the TMR level and then helps improve the system performance if compared to the conventional receiver that does not employ a TMR mitigation method, especially when an areal density is high and/or a TMR level is large.

  • Parameter Estimation Method Using Volterra Kernels for Nonlinear IIR Filters

    Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:11
      Page(s):
    2189-2199

    In this paper, we propose a parameter estimation method using Volterra kernels for the nonlinear IIR filters, which are used for the linearization of closed-box loudspeaker systems. The nonlinear IIR filter, which originates from a mirror filter, employs nonlinear parameters of the loudspeaker system. Hence, it is very important to realize an appropriate estimation method for the nonlinear parameters to increase the compensation ability of nonlinear distortions. However, it is difficult to obtain exact nonlinear parameters using the conventional parameter estimation method for nonlinear IIR filter, which uses the displacement characteristic of the diaphragm. The conventional method has two problems. First, it requires the displacement characteristic of the diaphragm but it is difficult to measure such tiny displacements. Moreover, a laser displacement gauge is required as an extra measurement instrument. Second, it has a limitation in the excitation signal used to measure the displacement of the diaphragm. On the other hand, in the proposed estimation method for nonlinear IIR filter, the parameters are updated using simulated annealing (SA) according to the cost function that represents the amount of compensation and these procedures are repeated until a given iteration count. The amount of compensation is calculated through computer simulation in which Volterra kernels of a target loudspeaker system is utilized as the loudspeaker model and then the loudspeaker model is compensated by the nonlinear IIR filter with the present parameters. Hence, the proposed method requires only an ordinary microphone and can utilize any excitation signal to estimate the nonlinear parameters. Some experimental results demonstrate that the proposed method can estimate the parameters more accurately than the conventional estimation method.

  • Estimation of Degradation of Nickel-Cadmium Batteries for Cordless Telephones by a Discharge-Current-Pulse Technique

    Toshiro HIRAI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E87-B No:4
      Page(s):
    984-989

    We investigated the accuracy of nickel-cadmium (Ni/Cd) battery degradation estimation by measuring the capacity of over 400 used cordless-telephone batteries using a discharge-current-pulse technique. The capacity is calculated from the change in battery voltage after the current pulse is applied, using an equation that we developed. Battery degradation is represented by a percentage of the capacity based on the nominal one. To estimate the accuracy of the degradation estimation, we compare capacity Qe estimated from the current pulse with the capacity Qa measured by discharging the batteries. The Qe estimated from the current pulse was within a range of 20% of error indicated by (Qe-Qa) for 47% of the tested batteries. The Qe of 51% of the batteries, however, was underestimated and exceeded lower limit (-20%) of the error. One reason for the discrepancy could be that the equation is inadequate for estimating the capacity from the current pulse. On the other hand, the capacity Qe of 1% of the batteries was overestimated and exceeded upper limit (+20%) of the error. An internal short is probably the main reason for this.

  • Improving Bandwidth Estimation for Internet Links by Statistical Methods

    Kazumine MATOBA  Shingo ATA  Masayuki MURATA  

     
    PAPER

      Vol:
    E84-B No:6
      Page(s):
    1521-1531

    Network dimensioning is an important issue to provide stable and QoS-rich communication services. A reliable estimation of bandwidths of links between the end-to-end path is a first step towards the network dimensioning. Pathchar is one of such tools for the bandwidth estimation for every link between two end hosts. However, pathchar still has several problems. If unexpectedly large errors are included or if route alternation is present during the measurement, the obtained estimation is much far from the correct one. We investigate the method to eliminate those errors in estimating the bandwidth. To increase the reliability on the estimation, the confidence interval for the estimated bandwidth is important. For this purpose, two approaches, parametric and nonparametric approaches, are investigated to add the confidence intervals. Another important issue is the method for controlling the measurement period to eliminate the measurement overheads. In this paper, we propose a measurement method to adaptively control the number of measurement data sets. Through experimental results, we show that our statistical approaches can provide the robust estimation regardless of the network conditions.

  • Estimation of Current and Voltage Distributions by Scanning Coupling Probe

    Satoshi KAZAMA  Shinichi SHINOHARA  Risaburo SATO  

     
    PAPER-EMC Measurement and Test

      Vol:
    E83-B No:3
      Page(s):
    460-466

    This paper describes a method for estimating current and voltage distributions by scanning with a probe. The method takes advantage of the phenomenon that the coupling between the current and the probe varies with the direction of the probe. The current and voltage are estimated by calculating the probe vector output for each of four directions. Both the current and voltage vector distributions can thus be estimated at the same time by using a single probe. The estimated distributions in a digital IC package and a microstrip line showed that this method produces reliable results. The simple structure of the probe should make it easy to reduce its size.