The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] filter(1571hit)

441-460hit(1571hit)

  • Iterative MMSE-FDE/MUI Cancellation and Antenna Diversity for Frequency-Domain Filtered SC-FDMA Uplink

    Suguru OKUYAMA  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2847-2856

    Broadband single-carrier frequency division multiple access (SC-FDMA) uplink using frequency-domain square-root Nyquist filtering is considered. The peak-to-average power ratio (PAPR) of filtered SC signals can be reduced by increasing the filter roll-off factor α. Furthermore, an additional frequency diversity gain can be obtained by making use of the excess bandwidth introduced by the transmit root Nyquist filtering. However, if the carrier-frequency separation is kept the same as in the case of α=0, the adjacent users' signal spectra overlap with the desired users' spectrum and the multiuser interference (MUI) is produced. In this paper, we propose two frequency-domain iterative MUI cancellation schemes which can achieve the frequency diversity gain through spectrum combining. The achievable bit error rate (BER) and throughput performances are evaluated by computer simulation.

  • Application of Cascade Connection of Recursive and Non-recursive Filters to Active Noise Control System Using Simultaneous Equations Method

    Kensaku FUJII  Kenji KASHIHARA  Mitsuji MUNEYASU  Masakazu MORIMOTO  

     
    PAPER-Noise and Vibration

      Vol:
    E94-A No:10
      Page(s):
    1899-1906

    In this paper, we propose a method capable of shortening the distance from a noise detection microphone to a loudspeaker, which is one of important issues in the field of active noise control (ANC). In the ANC system, the secondary noise provided by the loudspeaker is required arriving at an error microphone simultaneously with the primary noise to be cancelled. However, the reverberation involved in the secondary path from the loudspeaker to the error microphone increases the secondary noise components arriving later than the primary noise. The late components are not only invalid for canceling the primary noise but also impede the cancellation. To reduce the late components, the distance between the noise detection microphone and the loud speaker is generally extended. The proposed method differently reduces the late components by forming the noise control filter, which produces the secondary noise, with the cascade connection of a non-recursive and a recursive filters. The distance can be thus shortened. On the other hand, the recursive filter is required to work stably. The proposed method guarantees the stable work by forming the recursive filter with the lattice filter whose coefficients are restricted to less than unity.

  • A Novel Feeding Structure to Generate Multiple Transmission Zeros for Miniature Waveguide Bandpass Filters Composed of Frequency-Selective Surfaces

    Masataka OHIRA  Zhewang MA  Hiroyuki DEGUCHI  Mikio TSUJI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1586-1593

    In this paper, we propose a novel feeding structure for a coaxial-excited compact waveguide filter, which is composed of planar resonators called frequency-selective surfaces (FSSs). In our proposed feeding structure, new FSSs located at the input and output ports are directly excited by the coaxial line. By using the FSSs, the transition from the TEM mode to the TE10 mode is realized by the resonance of the FSSs. Therefore, the backshort length from the coaxial probe to the shorted waveguide end can be made much shorter than one-quarter of the guided wavelength. Additionally, the coaxial-excited FSS provides one transmission zero at each stopband. As a design example, a three-stage bandpass filter with 4% bandwidth at the X band is demonstrated. The designed filter has a very compact size of one cavity and has high skirt selectivity with six transmission zeros. The effectiveness of the design is confirmed by the comparison of frequency characteristics obtained by the simulation and measurement.

  • Performance Analysis of a 10-Gb/s Millimeter-Wave Impulse Radio Transmitter

    Yasuhiro NAKASHA  Naoki HARA  Kiyomichi ARAKI  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1557-1564

    This paper presents the analytical results of the effects of jitter and intersymbol interference (ISI) on a millimeter-wave impulse radio (IR) transceiver, compared with the performance of a developed 10-Gb/s W-band IR-transmitter prototype. The IR transmitter, which is compact and cost-effective, consists of a pulse generator (PG) that creates an extremely short pulse, a band-pass filter (BPF) that shapes the short pulse to the desired millimeter-wave pulse (wavelet), and an optional power amplifier. The jitters of the PG and ISI from the BPF are a hindrance in making the IR transceiver robust and in obtaining excellent performance. One analysis verified that, because of a novel retiming architecture, the random jitter and the data-dependent jitter from the PG give only a small penalty of < 0.5-dB increase in the signal-to-noise ratio (SNR) for achieving a bit error rate (BER) of < 10-12. An alternative analysis on the effect of ISI from the BPF indicated that using a Gaussian BPF enables a transmission with a BER of < 10-12 up to a data rate of 1.4 times as large as the bandwidth of the BPF, which is twice as high as that of a conventional amplitude shift keying (ASK) system. The analysis also showed that the IR system is more sensitive to the ISI than the ASK system and suggested that the mismatching of the skirt characteristics of the developed BPF with those of a Gaussian BPF causes tail lobes following the wavelet, resulting in an on/off ratio of 15 dB and hence, an SNR penalty of 6 dB.

  • Content Based Coarse to Fine Adaptive Interpolation Filter for High Resolution Video Coding

    Jia SU  Yiqing HUANG  Lei SUN  Shinichi SAKAIDA  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E94-A No:10
      Page(s):
    2013-2021

    With the increasing demand of high video quality and large image size, adaptive interpolation filter (AIF) addresses these issues and conquers the time varying effects resulting in increased coding efficiency, comparing with recent H.264 standard. However, currently most AIF algorithms are based on either frame level or macroblock (MB) level, which are not flexible enough for different video contents in a real codec system, and most of them are facing a severe time consuming problem. This paper proposes a content based coarse to fine AIF algorithm, which can adapt to video contents by adding different filters and conditions from coarse to fine. The overall algorithm has been mainly made up by 3 schemes: frequency analysis based frame level skip interpolation, motion vector modeling based region level interpolation, and edge detection based macroblock level interpolation. According to the experiments, AIF are discovered to be more effective in the high frequency frames, therefore, the condition to skip low frequency frames for generating AIF coefficients has been set. Moreover, by utilizing the motion vector information of previous frames the region level based interpolation has been designed, and Laplacian of Gaussian based macroblock level interpolation has been proposed to drive the interpolation process from coarse to fine. Six 720p and six 1080p video sequences which cover most typical video types have been tested for evaluating the proposed algorithm. The experimental results show that the proposed algorithm reduce total encoding time about 41% for 720p and 25% for 1080p sequences averagely, comparing with Key Technology Areas (KTA) Enhanced AIF algorithm, while obtains a BDPSNR gain up to 0.004 and 3.122 BDBR reduction.

  • Band Pass Response on Left-Handed Ferrite Rectangular Waveguide

    Kensuke OKUBO  Makoto TSUTSUMI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1565-1571

    This paper investigates characteristics of periodic structure of ferrite and dielectric slabs in cutoff waveguide which include left-handed operation. Transmission line model and finite element simulation are used to get dispersion characteristics and scattering parameters. Band pass response of left-handed ferrite mode at negative permeability region are discussed with backward wave phenomenon. Theoretical results show that by choosing appropriate ratio of (1) ferrite width and dielectric width, and (2) ferrite length and dielectric length, band pass response with steep edge characteristics can be obtained by the LH ferrite mode, which are confirmed with experiments using single crystal of yttrium iron garnet ferrite. Good band pass and phase shift responses are observed in S band.

  • Two Dimensional Non-separable Adaptive Directional Lifting Structure of Discrete Wavelet Transform

    Taichi YOSHIDA  Taizo SUZUKI  Seisuke KYOCHI  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:10
      Page(s):
    1920-1927

    In this paper, we propose a two dimensional (2D) non-separable adaptive directional lifting (ADL) structure for discrete wavelet transform (DWT) and its image coding application. Although a 2D non-separable lifting structure of 9/7 DWT has been proposed by interchanging some lifting, we generalize a polyphase representation of 2D non-separable lifting structure of DWT. Furthermore, by introducing the adaptive directional filteringingto the generalized structure, the 2D non-separable ADL structure is realized and applied into image coding. Our proposed method is simpler than the 1D ADL, and can select the different transforming direction with 1D ADL. Through the simulations, the proposed method is shown to be efficient for the lossy and lossless image coding performance.

  • Kalman-Filtering-Based Joint Angle Measurement with Wireless Wearable Sensor System for Simplified Gait Analysis

    Hiroki SAITO  Takashi WATANABE  

     
    LETTER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E94-D No:8
      Page(s):
    1716-1720

    The aim of this study is to realize a simplified gait analysis system using wearable sensors. In this paper, a joint angle measurement method using Kalman filter to correct gyroscope signals from accelerometer signals was examined in measurement of hip, knee and ankle joint angles with a wireless wearable sensor system, in which the sensors were attached on the body without exact positioning. The lower limb joint angles of three healthy subjects were measured during gait with the developed sensor system and a 3D motion measurement system in order to evaluate the measurement accuracy. Then, 10 m walking measurement was performed under different walking speeds with a healthy subject in order to find the usefulness of the system as a simplified gait analysis system. The joint angles were measured with reasonable accuracy, and the system showed joint angle changes that were similar to those shown in a previous report as walking speed changed. It would be necessary to examine the influence of sensor attachment position and method for more stable measurement, and also to study other parameters for gait evaluation.

  • A Memory Efficient Result Cache Scheme for P2P DHT Based on Bloom Filters

    Takahiro ARIYOSHI  Satoshi FUJITA  

     
    PAPER-Information Network

      Vol:
    E94-D No:8
      Page(s):
    1602-1609

    In this paper, we study the problem of efficient processing of conjunctive queries in Peer-to-Peer systems based on Distributed Hash Tables (P2P DHT, for short). The basic idea of our approach is to cache the search result for the queries submitted in the past, and to use them to improve the performance of succeeding query processing. More concretely, we propose to adopt Bloom filters as a concrete implementation of such a result cache rather than a list of items used in many conventional schemes. By taking such an approach, the cache size for each conjunctive query becomes as small as the size of each file index. The performance of the proposed scheme is evaluated by simulation. The result of simulation indicates that the proposed scheme is particularly effective when the size of available memory in each peer is bounded by a small value, and when the number of peers is 100, it reduces the amount of data transmissions of previous schemes by 75%.

  • Low-Latency Digital-IF Scheme Using an IIR Polyphase Filter Structure for Delay-Sensitive Repeater Systems

    Hyung-Min CHANG  Jun-Seok YANG  Won-Cheol LEE  

     
    PAPER-Communication Theory and Signals

      Vol:
    E94-A No:8
      Page(s):
    1715-1723

    Repeaters equipped with on-board digital baseband processing in a time division duplex (TDD) demand short processing time in order to alleviate inter-symbol interference resulting from having a time delay that is greater than the guard time. To accomplish this, the total system delay of the repeater should be minimized as much as possible without distorting signal quality. Conventionally, the finite impulse response (FIR) type of filter is deployed as a channelization filter, but due to the necessity of large numbers of coefficients to fulfill a prerequisite filter response with a sharp transition band characteristic, an unwanted excessive time delay intrinsically occurs. To make the processing delay as low as possible, this paper proposes a method employing a minimum-phase characterized infinite impulse response (IIR) filter whose magnitude response is almost identical to that of the original FIR filter. Furthermore, in order to linearize the phase response of the designed IIR filter, this paper also introduces an all-pass filter cascaded with the IIR filter for digital down-conversion as well as up-conversion. To achieve further simplicity, this paper introduces polyphase-style IIR filters transformed from conventional single IIR filters that have their own all-pass filters in order to linearize the phase response. The computer simulation results verify that the proposed integrated IIR filter exhibits a relatively short processing delay with a minor deterioration in signal quality-like error vector magnitude (EVM) performance.

  • Regularization of the RLS Algorithm

    Jacob BENESTY  Constantin PALEOLOGU  Silviu CIOCHIN  

     
    LETTER

      Vol:
    E94-A No:8
      Page(s):
    1628-1629

    Regularization plays a fundamental role in adaptive filtering. There are, very likely, many different ways to regularize an adaptive filter. In this letter, we propose one possible way to do it based on a condition that makes intuitively sense. From this condition, we show how to regularize the recursive least-squares (RLS) algorithm.

  • A 0.5–6 MHz Active-RC LPF with Fine Gain Steps Using Binary Interpolated Resistor Banks

    Sungho BECK  Seongheon JEONG  Sunki MIN  Myung-Woon HWANG  Stephen T. KIM  Kyutae LIM  Emmanouil M. TENTZERIS  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:8
      Page(s):
    1328-1331

    This paper proposes an active-RC filter that achieves a wide pseudo-continuous bandwidth-tuning range and a wide gain range with fine steps using a novel switched resistor architecture. A channel-selection filter with the proposed resistor bank is designed for a multi-mode mobile-TV receiver with the 6th order Chebyshev-I topology. The bandwidth, 0.5–6 MHz with 5% steps, supports multiple mobile-TV standards with sufficient margins for process and temperature variations. The filter also accomplishes a 30-dB variable gain range with 6-dB steps, and it relaxes the dynamic range requirement of a succeeding programmable gain amplifier. The power consumption of the filter, 3.4–5.0 mW, is adjustable according to the bandwidth and the signal level. The filter was fabricated with on-chip bandwidth-calibration circuitry in 0.18-µm CMOS and occupied 0.81 mm2.

  • An Alternating Selection for Parallel Affine Projection Filters

    Kwang-Hoon KIM  Seong-Eun KIM  Woo-Jin SONG  

     
    LETTER-Circuit Theory

      Vol:
    E94-A No:7
      Page(s):
    1576-1580

    We present a new structure for parallel affine projection (AP) filters with different step-sizes. By observing their error signals, the proposed alternating AP (A-AP) filter selects one of the two AP filters and updates the weights of the selected filter for each iteration. As a result, the total computations required for the proposed structure is almost the same as that for a single AP filter. Experimental results show that the proposed alternating selection scheme extracts the best properties of each component filter, namely fast convergence and small steady-state error.

  • Use of Area Layout Information for RSSI-Based Indoor Target Tracking Methods

    Daisuke ANZAI  Kentaro YANAGIHARA  Kyesan LEE  Shinsuke HARA  

     
    PAPER-Network

      Vol:
    E94-B No:7
      Page(s):
    1924-1932

    For an indoor area where a target node is tracked with anchor nodes, we can calculate the priori probability density functions (pdfs) on the distances between the target and anchor nodes by using its shape, three-dimensional sizes and anchor nodes locations. We call it “the area layout information (ALI)” and apply it for two indoor target tracking methods with received signal strength indication (RSSI) assuming a square location estimation area. First, we introduce the ALI to a target tracking method which tracks a target using the weighted sum of its past-to-present locations by a simple infinite impulse response (IIR) low pass filter. Second, we show that the ALI is applicable to a target tracking method with a particle filter where the motion of the target is nonlinearly modelled. The performances of the two tracking methods are evaluated by not only computer simulations but also experiments. The results demonstrate that the use of ALI can successfully improve the location estimation performance of both target tracking methods, without huge increase of computational complexity.

  • TCP ACK Packet Filtering Method in IEEE 802.16e WiMAX Systems

    Kyungkoo JUN  Seokhoon KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2166-2169

    Existing filtering methods of TCP ACK packets are known to be effective in reducing the required bandwidth, resulting in the improvement of TCP throughput. However, the methods cannot handle the filtering of piggyback ACK packets. Considering that most TCP applications require bidirectional data exchange, the lack of the functionality to deal with the piggyback ACK packets should be addressed. This paper proposes a novel filtering scheme for WiMAX systems that can handle the piggyback ACK packets. The novelty comes from the fact that the proposed method overlaps the processing time of packet merging with the round trip delay of the bandwidth request-and-grant procedure. It is advantageous because it does not require extra time for the merging. The results from an analytical model and simulations show that the required uplink bandwidth is decreased while the downlink throughput is increased.

  • NUFFT- & GPU-Based Fast Imaging of Vegetation

    Amedeo CAPOZZOLI  Claudio CURCIO  Antonio DI VICO  Angelo LISENO  

     
    PAPER-Sensing

      Vol:
    E94-B No:7
      Page(s):
    2092-2103

    We develop an effective algorithm, based on the filtered backprojection (FBP) approach, for the imaging of vegetation. Under the FBP scheme, the reconstruction amounts at a non-trivial Fourier inversion, since the data are Fourier samples arranged on a non-Cartesian grid. The computational issue is efficiently tackled by Non-Uniform Fast Fourier Transforms (NUFFTs), whose complexity grows asymptotically as that of a standard FFT. Furthermore, significant speed-ups, as compared to fast CPU implementations, are obtained by a parallel versions of the NUFFT algorithm, purposely designed to be run on Graphic Processing Units (GPUs) by using the CUDA language. The performance of the parallel algorithm has been assessed in comparison to a CPU-multicore accelerated, Matlab implementation of the same routine, to other CPU-multicore accelerated implementations based on standard FFT and employing linear, cubic, spline and sinc interpolations and to a different, parallel algorithm exploiting a parallel linear interpolation stage. The proposed approach has resulted the most computationally convenient. Furthermore, an indoor, polarimetric experimental setup is developed, capable to isolate and introduce, one at a time, different non-idealities of a real acquisition, as the sources (wind, rain) of temporal decorrelation. Experimental far-field polarimetric measurements on a thuja plicata (western redcedar) tree point out the performance of the set up algorithm, its robustness against data truncation and temporal decorrelation as well as the possibility of discriminating scatterers with different features within the investigated scene.

  • Compact Planar Bandpass Filters with Arbitrarily-Shaped Conductor Patches and Slots

    Tadashi KIDO  Hiroyuki DEGUCHI  Mikio TSUJI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:6
      Page(s):
    1091-1097

    This paper develops planar circuit filters consisting of arbitrarily-shaped conductor patches and slots on a conductor-backed dielectric substrate, which are designed by an optimization technique based on the genetic algorithm. The developed filter has multiple resonators and their mutual couplings in the limited space by using both sides of the substrate, so that its compactness is realized. We first demonstrate the effectiveness of the present filter structure from some design samples numerically and experimentally. Then as a practical application, we design compact UWB filters, and their filter characteristics are verified from the measurements.

  • A New Power-Consumption Optimization Technique for Two-Stage Operational Amplifiers

    Sungho BECK  Stephen T. KIM  Michael LEE  Kyutae LIM  Joy LASKAR  Manos M. TENTZERIS  

     
    LETTER-Electronic Circuits

      Vol:
    E94-C No:6
      Page(s):
    1138-1140

    This paper proposes a technique for two-stage operational amplifiers (OPAMPs) to optimize power consumption according to various channel conditions of wireless communication systems. The proposed OPAMP has the ability of reducing the quiescent current of each stage independently by introducing additional common-mode feedback, therefore more optimization is possible according to the channel conditions than conventional two-stage OPAMPs. The simulations verify the benefits of the technique. As a proof-of-concept topology, the proposed OPAMPs were used in a channel-selection filter for a multi-standard mobile-TV receiver. The power consumption of the filter, 3.4–5.0 mW, was adjustable according to the bandwidth, the noise, and the jammer level. The performance of the filter meets the requirements and verifies the effectiveness of the proposed approach. The filter was fabricated in 0.18-µm CMOS and occupied 0.64 mm2.

  • A New Formalism of the Sliding Window Recursive Least Squares Algorithm and Its Fast Version

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:6
      Page(s):
    1394-1400

    A new compact form of the sliding window recursive least squares (SWRLS) algorithm, the I-SWRLS algorithm, is derived using an indefinite matrix. The resultant algorithm has a form similar to that of the traditional recursive least squares (RLS) algorithm, and is more computationally efficient than the conventional SWRLS algorithm including two Riccati equations. Furthermore, a computationally reduced version of the I-SWRLS algorithm is developed utilizing a shift property of the correlation matrix of input data. The resulting fast algorithm reduces the computational complexity from O(N2) to O(N) per iteration when the filter length (tap number) is N, but retains the same tracking performance as the original algorithm. This fast algorithm is much easier to implement than the existing SWC FTF algorithms.

  • A High-Linearity 264-MHz Source-Follower-Based Low-Pass Filter with High-Q Second-Order Cell for MB-OFDM UWB

    Hong ZHANG  Xue LI  Suming LAI  Pinyi REN  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    999-1007

    Source-follower-based (SFB) continuous-time low-pass filters (LPF) have the advantages of low power and high linearity over other filter topologies. The second-order SFB filter cells, which are key building blocks for high-order SFB filters, are often realized by composite source follower with positive feedback. For a single branch 2nd-order SFB cell, the linearity drops severely at high frequencies in the pass band because its slew-rate is restricted by the Q factor and the pole frequency. The folded 2nd-order SFB cell provides higher linearity because it has two DC branches, and hence has another freedom to increase the slew rate. However, because of the positive feedback, the folded and unfolded 2nd-order SFB cells, especially those with high Q factors, tend to be unstable and act as relaxation oscillators under given circuit parameters. In order to obtain higher Q factor, a new topology for the 2nd-order SFB cell without positive feedback is proposed in this paper, which is unconditionally stable and can provide high linearity. Based on the folded 2nd-order SFB cell and the proposed high-Q SFB cell, a 264 MHz sixth-order LPF with 3 stages for ultra wideband (UWB) applications is designed in 0.18 µm CMOS technology. Simulation results show that the LPF achieves an IIP3 of above 12.5 dBm in the whole pass band. The LPF consumes only 4.1 mA from a 1.8 V power supply, and has a layout area of 200 µm 150 µm.

441-460hit(1571hit)