The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] filter(1571hit)

401-420hit(1571hit)

  • Resonant-Mode Characteristics of a New Three-Mode Hybrid Microstrip/Slotline Resonator and Novel Realization of Compact Bandpass Filter with Four Transmission Zeros

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1203-1210

    This paper proposes a new three-mode resonator, which consists of a parallel-coupled microstrip line resonator embedded with a slotline resonator, and develops a compact low-loss bandpass filter (BPF) with a sharp roll-off response because of four transmission zeros (TZ) located very near the passband. Resonance mechanism and properties of the three modes are first analyzed by using an eigen-mode analysis, and then an equivalent circuit model is established for expressing a novel coupling scheme of the developed BPF. It is made clear from the results of circuit analysis that the four TZs are produced because of multiple paths between the input/output stub lines formed by the three resonant modes and the direct source/load coupling. The validity of the proposed resonator and filter is supported by the comparison between simulated and measured results.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Application of Simultaneous Equations Method to ANC System with Non-minimum Phase Secondary Path

    Kensaku FUJII  Kenji KASHIHARA  Isao WAKABAYASHI  Mitsuji MUNEYASU  Masakazu MORIMOTO  

     
    PAPER-Noise and Vibration

      Vol:
    E95-A No:7
      Page(s):
    1109-1116

    In this paper, we propose a method capable of shortening the distance from a noise detection microphone to a loudspeaker in active noise control system with non-minimum phase secondary path. The distance can be basically shortened by forming the noise control filter, which produces the secondary noise provided by the loudspeaker, with the cascade connection of a non-recursive filter and a recursive filter. The output of the recursive filter, however, diverges even when the secondary path includes only a minimum phase component. In this paper, we prevent the divergence by utilizing MINT (multi-input/output inverse theorem) method increasing the number of secondary paths than that of primary paths. MINT method, however, requires a large scale inverse matrix operation, which increases the processing cost. We hence propose a method reducing the processing cost. Actually, MINT method has only to be applied to the non-minimum phase components of the secondary paths. We hence extract the non-minimum phase components and then apply MINT method only to those. The order of the inverse matrix thereby decreases and the processing cost can be reduced. We finally show a simulation result demonstrating that the proposed method successfully works.

  • Noise Constrained Data-Reusing Adaptive Algorithms for System Identification

    Young-Seok CHOI  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:6
      Page(s):
    1084-1087

    We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.

  • 100–1000 MHz Programmable Continuous-Time Filter with Auto-Tuning Schemes and Digital Calibration Sequences for HDD Read Channels

    Takahide TERADA  Koji NASU  Taizo YAMAWAKI  Masaru KOKUBO  

     
    PAPER

      Vol:
    E95-C No:6
      Page(s):
    1050-1058

    A 4th-order programmable continuous-time filter (CTF) for hard-disk-drive (HDD) read channels was developed with 65-nm CMOS process technology. The CTF cutoff frequency and boost are programmable by switching units of the operational trans-conductance amplifier (OTA) banks and the capacitor banks. The switches are operated by lifted local-supply voltage to reduce on-resistance of the transistors. The CTF characteristics were robust against process technology variations and supply voltage and temperature ranges due to the introduction of a digitally assisted compensation scheme with analog auto-tuning circuits and digital calibration sequences. The digital calibration sequences, which fit into the operation sequence of the HDD read channel, compensate for the tuning circuits of the process technology variations, and the tuning circuits compensate for the CTF characteristics over the supply voltage and temperature ranges. As a result, the CTF had a programmability of 100–1000-MHz cutoff frequency and 0–12-dB boost.

  • Fast Convolution Using Generalized Sliding Fermat Number Transform with Application to Digital Filtering

    Hamze Haidar ALAEDDINE  Oussama BAZZI  Ali Haidar ALAEDDINE  Yasser MOHANNA  Gilles BUREL  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:6
      Page(s):
    1007-1017

    This paper is about a new efficient method for the implementation of a Block Proportionate Normalized Least Mean Square (BPNLMS++) adaptive filter using the Fermat Number Transform (FNT) and its inverse (IFNT). These transforms present advantages compared to Fast Fourier Transform (FFT) and the inverse (IFFT). An efficient state space method for implementing the FNT over rectangular windows is used in the cases where there is a large overlap between the consecutive input signals. This is called Generalized Sliding Fermat Number Transform (GSFNT) and is useful for reducing the computational complexity of finite ring convolvers and correlators. In this contribution, we propose, as a first objective, an efficient state algorithm with the purpose of reducing the complexity of IFNT. This algorithm, called Inverse Generalized Sliding Fermat Number Transform (IGSFNT), uses the technique of Generalized Sliding associated to matricial calculation in the Galois Field. The second objective is to realize an implementation of the BPNLMS++ adaptive filter using GSFNT and IGSFNT, which can significantly reduce the computation complexity of the filter implantation on digital signal processors.

  • Design of a Direct Sampling Mixer with a Complex Coefficient Transfer Function

    Yohei MORISHITA  Noriaki SAITO  Koji TAKINAMI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E95-C No:6
      Page(s):
    999-1007

    The Direct Sampling Mixer (DSM) with a complex coefficient transfer function is demonstrated. The operation theory and the detail design methodology are discussed for the high order complex DSM, which can achieve large image rejection ratio by introducing the attenuation pole at the image frequency band. The proposed architecture was fabricated in a 65 nm CMOS process. The measured results agree well with the theoretical calculation, which proves the validity of the proposed architecture and the design methodology. By using the proposed design method, it will be possible for circuit designers to design the DSM with large image rejection ratio without repeated lengthy simulations.

  • Beating Analysis of Shubnikov de Haas Oscillation in In0.53Ga0.47As Double Quantum Well toward Spin Filter Applications Open Access

    Takaaki KOGA  Toru MATSUURA  Sébastien FANIEL  Satofumi SOUMA  Shunsuke MINESHIGE  Yoshiaki SEKINE  Hiroki SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E95-C No:5
      Page(s):
    770-776

    We recently determined the values of intrinsic spin-orbit (SO) parameters for In0.52Al0.48As/In0.53Ga0.47As(10 nm)/In0.52Al0.48As (InGaAs/InAlAs) quantum wells (QW), lattice-matched to (001) InP, from the weak localization/antilocalization analysis of the low-temperature magneto-conductivity measurements [1]. We have then studied the subband energy spectra for the InGaAs/InAlAs double QW system from beatings in the Shubnikov de Haas (SdH) oscillations. The basic properties obtained here for the double QW system provides useful information for realizing nonmagnetic spin-filter devices based on the spin-orbit interaction [2].

  • Selective Gammatone Envelope Feature for Robust Sound Event Recognition

    Yi Ren LENG  Huy Dat TRAN  Norihide KITAOKA  Haizhou LI  

     
    PAPER-Audio Processing

      Vol:
    E95-D No:5
      Page(s):
    1229-1237

    Conventional features for Automatic Speech Recognition and Sound Event Recognition such as Mel-Frequency Cepstral Coefficients (MFCCs) have been shown to perform poorly in noisy conditions. We introduce an auditory feature based on the gammatone filterbank, the Selective Gammatone Envelope Feature (SGEF), for Robust Sound Event Recognition where channel selection and the filterbank envelope is used to reduce the effect of noise for specific noise environments. In the experiments with Hidden Markov Model (HMM) recognizers, we shall show that our feature outperforms MFCCs significantly in four different noisy environments at various signal-to-noise ratios.

  • The 12 MHz Switched Capacitor Low-Pass Filter Chip Design for WiMAX Applications

    Jhin-Fang HUANG  Wen-Cheng LAI  Kun-Jie HUANG  Ron-Yi LIU  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:5
      Page(s):
    972-975

    In this paper, a fifth order curer low-pass filter using as switched-capacitor (SC) architecture is proposed and fabricated with TSMC 0.18 µm CMOS process. A fully differential SC is adopted via the bilinear transform of the corresponding analogue RLC passive prototype. To reach the largest possible input dynamic range and save chip area, the method of dynamic range scaling and minimum capacitor scaling is used. Measured results show that the proposed filter achieves a pass-band of 12.1 MHz with a sampling rate of 100 MHz, a SFDR of 50 dB, a stop-band attenuation greater than 50 dB and a power consumption of 48.5 mW at 1.8 V power supply. Including pads, the chip area occupies 1.515 (1.391.09) mm2. This paper has the feature of low noise, excellent linearity of the filter, and high stability. The experimental results show that it has perfect performance for WiMAX applications and standard is recommended.

  • A 180-µW, 120-MHz, Fourth Order Low-Pass Bessel Filter Based on FVF Biquad Structure

    Hundo SHIN  Seung-Tak RYU  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:5
      Page(s):
    949-957

    This paper proposes a new biquad structure based on a flipped voltage follower (FVF) for low-power and wide-bandwidth (BW) low pass filter. The proposed biquad structure consists of an FVF and a source follower (SF) for complex pole pair generation and zero cancellation. The presented design provides good linearity at low power consumption, owing to the voltage follower structures. A power/BW ratio (PBWR) is suggested as a performance metric to compare power efficiency to bandwidth, and the proposed biquad structure shows excellent PBWR, especially for low quality factor (Q) design. As a prototype, a fourth order Bessel filter was fabricated in 0.18 µm CMOS technology. The measured BW, power consumption, IIP3, and FoM are 120 MHz, 180 µW, 15 dBm, and 0.34 fJ, respectively.

  • Design and Performance of Overlap FFT Filter-Bank for Dynamic Spectrum Access Applications

    Motohiro TANABE  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1249-1255

    An OFDMA-based (Orthogonal Frequency Division Multiple Access-based) channel access scheme for dynamic spectrum access has the drawbacks of large PAPR (Peak to Average Power Ratio) and large ACI (Adjacent Channel Interference). To solve these problems, a flexible channel access scheme using an overlap FFT filter-bank was proposed based on single carrier modulation for dynamic spectrum access. In order to apply the overlap FFT filter-bank for dynamic spectrum access, it is necessary to clarify the performance of the overlap FFT filter-bank according to the design parameters since its frequency characteristics are critical for dynamic spectrum access applications. This paper analyzes the overlap FFT filter-bank and evaluates its performance such as frequency characteristics and ACI performance according to the design parameters.

  • An Ultra-Low Voltage Analog Front End for Strain Gauge Sensory System Application in 0.18 µm CMOS

    Alexander EDWARD  Pak Kwong CHAN  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:4
      Page(s):
    733-743

    This paper presents analysis and design of a new ultra-low voltage analog front end (AFE) dedicated to strain sensor applications. The AFE, designed in 0.18 µm CMOS process, features a chopper-stabilized instrumentation amplifier (IA), a balanced active MOSFET-C 2nd order low pass filter (LPF), a clock generator and a voltage booster which operate at supply voltage (Vdd) of 0.6 V. The designed IA achieves 30 dB of closed-loop gain, 101 dB of common-mode rejection ratio (CMRR) at 50 Hz, 80 dB of power-supply rejection ratio (PSRR) at 50 Hz, thermal noise floor of 53.4 nV/, current consumption of 14 µA, and noise efficiency factor (NEF) of 9.7. The high CMRR and rail-to-rail output swing capability is attributed to a new low voltage realization of the active-bootstrapped technique using a pseudo-differential gain-boosting operational transconductance amplifier (OTA) and proposed current-driven bulk (CDB) biasing technique. An output capacitor-less low-dropout regulator (LDO), with a new fast start-up LPF technique, is used to regulate this 0.6 V supply from a 0.8–1.0 V energy harvesting power source. It achieves power supply rejection (PSR) of 42 dB at frequency of 1 MHz. A cascode compensated pseudo differential amplifier is used as the filter's building block for low power design. The filter's single-ended-to-balanced converter is implemented using a new low voltage amplifier with two-stage common-mode cancellation. The overall AFE was simulated to have 65.6 dB of signal-to-noise ratio (SNR), total harmonic distortion (THD) of less than 0.9% for a 100 Hz sinusoidal maximum input signal, bandwidth of 2 kHz, and power consumption of 51.2 µW. Spectre RF simulations were performed to validate the design using BSIM3V3 transistor models provided by GLOBALFOUNDRIES 0.18 µm CMOS process.

  • A 64 Cycles/MB, Luma-Chroma Parallelized H.264/AVC Deblocking Filter for 4 K2 K Applications

    Weiwei SHEN  Yibo FAN  Xiaoyang ZENG  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    441-446

    In this paper, a high-throughput debloking filter is presented for H.264/AVC standard, catering video applications with 4 K2 K (40962304) ultra-definition resolution. In order to strengthen the parallelism without simply increasing the area, we propose a luma-chroma parallel method. Meanwhile, this work reduces the number of processing cycles, the amount of external memory traffic and the working frequency, by using triple four-stage pipeline filters and a luma-chroma interlaced sequence. Furthermore, it eliminates most unnecessary off-chip memory bandwidth with a highly reusable memory scheme, and adopts a “slide window” buffer scheme. As a result, our design can support 4 K2 K at 30 fps applications at the working frequency of only 70.8 MHz.

  • Iterative Superimposed Pilot-Assisted Channel Estimation Using Sliding Wiener Filtering for Single-Carrier Block Transmission

    Tetsuya UCHIUMI  Tatsunori OBARA  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    924-932

    In the conventional iterative superimposed pilot-assisted channel estimation (SI-PACE), simple averaging of the instantaneous channel estimates obtained by using the pilot over several single-carrier (SC) blocks (called the frame in this paper) is taken in order to reduce the interference from data symbols. Therefore, the conventional SI-PACE has low tracking ability against fading time variations. To solve the tracking problem, Wiener filtering (WF)-based averaging can be used instead of simple averaging. However, WF incurs high computational complexity. Furthermore, the estimation error of the fading autocorrelation function significantly degrades the channel estimation accuracy. In order to improve the channel estimation accuracy while keeping the computational complexity low, a new iterative SI-PACE using sliding WF (called iterative SWFSI-PACE) is proposed. The channel estimation is done by sliding a WF having a shorter filter size than the measurement interval. The bit error rate (BER) and throughput performances of SC-FDE using iterative SWFSI-PACE are investigated by computer simulation to show that the proposed scheme achieves good BER and throughput performances while keeping the computational complexity low irrespective of the fading rate (or maximum Doppler frequency).

  • A Novel Half Mode Elliptic SIW (HMESIW) Filter with Bypass Coupling Substrate Integrated Circular Cavity (BCSICC)

    Boren ZHENG  Zhiqin ZHAO  Youxin LV  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E95-C No:3
      Page(s):
    408-411

    A novel half mode elliptic substrate integrated waveguide (HMESIW) filter with bypass coupling substrate integrated circular cavity (BCSICC) is proposed and fabricated by using standard PCB technology. Due to the use of an elliptical waveguide cavity, the tolerance sensitivity of the filter is reduced. The filter optimizing procedure is therefore simplified. The measured results demonstrate its superior performance in tolerance sensitivity and show good agreements with the simulation results.

  • Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-Shape for Suppression of Second Harmonic

    Ali LALBAKHSH  Abbas Ali LOTFI NEYESTANAK  Mohammad NASER-MOGHADDASI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E95-C No:3
      Page(s):
    378-381

    In this paper, a novel microstrip hairpin-line bandpass filter which employs a modified Minkowski fractal shape is proposed. Although conventional hairpin-line filters are popular for RF front ends, they suffer from undesired spurious responses located at the second harmonic, which causes asymmetry in the upper skirt band. By proper design, the second harmonic of fractal filters can be significantly suppressed through the use of fractal shape. To validate this novel geometry, the proposed filters are fabricated and measured. Simulated results are in good agreement with measured results.

  • Proposal of Novel Optical Burst Signal Receiver for ONU in Optical Switched Access Network

    Hiromi UEDA  Keita HAMASAKI  Takashi KURIYAMA  Toshinori TSUBOI  Hiroyuki KASAI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:3
      Page(s):
    819-831

    To realize economical optical burst signal receivers for the Optical Network Unit (ONU) of the Ethernet Optical Switched Access Network (E-OSAN), we previously implemented optical burst receivers with AC-coupling and DC-coupling using off-the-shelf components, and showed that the former offers better performance. This paper proposes a new optical burst signal receiver that uses the transfer function, Gn(s) = 1-Hn(s), where Hn(s) denotes a Bessel filter transfer function of order n. We also present a method for designing the proposed receiver and clarify that it has better performance than the conventional AC-coupling one. We then present an LCR circuit synthesis of Gn(s), which is necessary to actually implement a burst receiver based on the proposal.

  • Robust Tracking Using Particle Filter with a Hybrid Feature

    Xinyue ZHAO  Yutaka SATOH  Hidenori TAKAUJI  Shun'ichi KANEKO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    646-657

    This paper presents a novel method for robust object tracking in video sequences using a hybrid feature-based observation model in a particle filtering framework. An ideal observation model should have both high ability to accurately distinguish objects from the background and high reliability to identify the detected objects. Traditional features are better at solving the former problem but weak in solving the latter one. To overcome that, we adopt a robust and dynamic feature called Grayscale Arranging Pairs (GAP), which has high discriminative ability even under conditions of severe illumination variation and dynamic background elements. Together with the GAP feature, we also adopt the color histogram feature in order to take advantage of traditional features in resolving the first problem. At the same time, an efficient and simple integration method is used to combine the GAP feature with color information. Comparative experiments demonstrate that object tracking with our integrated features performs well even when objects go across complex backgrounds.

  • Novel Compact High-Pass Filter with Sharp Attenuation Slope Using Cross-Coupling in the Multi-Layer Structure

    Takenori YASUZUMI  Tomoki UWANO  Osamu HASHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    313-316

    A planar high-pass filter (HPF) by using cross-couplings in multi-layer structure is proposed in this paper. The HPF consists of parallel plate and gap type capacitors and inductor lines on the bottom conductor. The one block of the HPF has a ladder T-section in the bridge T configuration. The one block HPF is, thus, coarsely designed in the manner of the proto-type HPF and the performance is optimized by circuit simulator. With the gap capacitor adjusted the proposed HPF illustrates the steep slope characteristics near the cut-off frequency by the attenuation pole. In order to improve the stopband performance, the cascaded two block HPF is examined. Its measured results show the good agreement with the simulated ones giving the second attenuation pole by an inductive cross-coupling.

401-420hit(1571hit)