The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] gait(18hit)

1-18hit
  • Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network

    Hyun KWON  

     
    LETTER-Information Network

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:2
      Page(s):
    262-266

    Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.

  • Gait Phase Partitioning and Footprint Detection Using Mutually Constrained Piecewise Linear Approximation with Dynamic Programming

    Makoto YASUKAWA  Yasushi MAKIHARA  Toshinori HOSOI  Masahiro KUBO  Yasushi YAGI  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1951-1962

    Human gait analysis has been widely used in medical and health fields. It is essential to extract spatio-temporal gait features (e.g., single support duration, step length, and toe angle) by partitioning the gait phase and estimating the footprint position/orientation in such fields. Therefore, we propose a method to partition the gait phase given a foot position sequence using mutually constrained piecewise linear approximation with dynamic programming, which not only represents normal gait well but also pathological gait without training data. We also propose a method to detect footprints by accumulating toe edges on the floor plane during stance phases, which enables us to detect footprints more clearly than a conventional method. Finally, we extract four spatial/temporal gait parameters for accuracy evaluation: single support duration, double support duration, toe angle, and step length. We conducted experiments to validate the proposed method using two types of gait patterns, that is, healthy and mimicked hemiplegic gait, from 10 subjects. We confirmed that the proposed method could estimate the spatial/temporal gait parameters more accurately than a conventional skeleton-based method regardless of the gait pattern.

  • Health Indicator Estimation by Video-Based Gait Analysis

    Ruochen LIAO  Kousuke MORIWAKI  Yasushi MAKIHARA  Daigo MURAMATSU  Noriko TAKEMURA  Yasushi YAGI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1678-1690

    In this study, we propose a method to estimate body composition-related health indicators (e.g., ratio of body fat, body water, and muscle, etc.) using video-based gait analysis. This method is more efficient than individual measurement using a conventional body composition meter. Specifically, we designed a deep-learning framework with a convolutional neural network (CNN), where the input is a gait energy image (GEI) and the output consists of the health indicators. Although a vast amount of training data is typically required to train network parameters, it is unfeasible to collect sufficient ground-truth data, i.e., pairs consisting of the gait video and the health indicators measured using a body composition meter for each subject. We therefore use a two-step approach to exploit an auxiliary gait dataset that contains a large number of subjects but lacks the ground-truth health indicators. At the first step, we pre-train a backbone network using the auxiliary dataset to output gait primitives such as arm swing, stride, the degree of stoop, and the body width — considered to be relevant to the health indicators. At the second step, we add some layers to the backbone network and fine-tune the entire network to output the health indicators even with a limited number of ground-truth data points of the health indicators. Experimental results show that the proposed method outperforms the other methods when training from scratch as well as when using an auto-encoder-based pre-training and fine-tuning approach; it achieves relatively high estimation accuracy for the body composition-related health indicators except for body fat-relevant ones.

  • CJAM: Convolutional Neural Network Joint Attention Mechanism in Gait Recognition

    Pengtao JIA  Qi ZHAO  Boze LI  Jing ZHANG  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1239-1249

    Gait recognition distinguishes one individual from others according to the natural patterns of human gaits. Gait recognition is a challenging signal processing technology for biometric identification due to the ambiguity of contours and the complex feature extraction procedure. In this work, we proposed a new model - the convolutional neural network (CNN) joint attention mechanism (CJAM) - to classify the gait sequences and conduct person identification using the CASIA-A and CASIA-B gait datasets. The CNN model has the ability to extract gait features, and the attention mechanism continuously focuses on the most discriminative area to achieve person identification. We present a comprehensive transformation from gait image preprocessing to final identification. The results from 12 experiments show that the new attention model leads to a lower error rate than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%, respectively.

  • Individuality-Preserving Silhouette Extraction for Gait Recognition and Its Speedup

    Masakazu IWAMURA  Shunsuke MORI  Koichiro NAKAMURA  Takuya TANOUE  Yuzuko UTSUMI  Yasushi MAKIHARA  Daigo MURAMATSU  Koichi KISE  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    992-1001

    Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.

  • Development of Artificial Neural Network Based Automatic Stride Length Estimation Method Using IMU: Validation Test with Healthy Subjects

    Yoshitaka NOZAKI  Takashi WATANABE  

     
    LETTER-Biological Engineering

      Pubricized:
    2020/06/10
      Vol:
    E103-D No:9
      Page(s):
    2027-2031

    Rehabilitation and evaluation of motor function are important for motor disabled patients. In stride length estimation using an IMU attached to the foot, it is necessary to detect the time of the movement state, in which acceleration should be integrated. In our previous study, acceleration thresholds were used to determine the integration section, so it was necessary to adjust the threshold values for each subject. The purpose of this study was to develop a method for estimating stride length automatically using an artificial neural network (ANN). In this paper, a 4-layer ANN with feature extraction layers trained by autoencoder was tested. In addition, the methods of searching for the local minimum of acceleration or ANN output after detecting the movement state section by ANN were examined. The proposed method estimated the stride length for healthy subjects with error of -1.88 ± 2.36%, which was almost the same as the previous threshold based method (-0.97 ± 2.68%). The correlation coefficients between the estimated stride length and the reference value were 0.981 and 0.976 for the proposed and previous methods, respectively. The error ranges excluding outliers were between -7.03% and 3.23%, between -7.13% and 5.09% for the proposed and previous methods, respectively. The proposed method would be effective because the error range was smaller than the conventional method and no threshold adjustment was required.

  • Discrimination between Genuine and Cloned Gait Silhouette Videos via Autoencoder-Based Training Data Generation

    Yuki HIROSE  Kazuaki NAKAMURA  Naoko NITTA  Noboru BABAGUCHI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2535-2546

    Spoofing attacks are one of the biggest concerns for most biometric recognition systems. This will be also the case with silhouette-based gait recognition in the near future. So far, gait recognition has been fortunately out of the scope of spoofing attacks. However, it is becoming a real threat with the rapid growth and spread of deep neural network-based multimedia generation techniques, which will allow attackers to generate a fake video of gait silhouettes resembling a target person's walking motion. We refer to such computer-generated fake silhouettes as gait silhouette clones (GSCs). To deal with the future threat caused by GSCs, in this paper, we propose a supervised method for discriminating GSCs from genuine gait silhouettes (GGSs) that are observed from actual walking people. For training a good discriminator, it is important to collect training datasets of both GGSs and GSCs which do not differ from each other in any aspect other than genuineness. To this end, we propose to generate a training set of GSCs from GGSs by transforming them using multiple autoencoders. The generated GSCs are used together with their original GGSs for training the discriminator. In our experiments, the proposed method achieved the recognition accuracy of up to 94% for several test datasets, which demonstrates the effectiveness and the generality of the proposed method.

  • Individuality-Preserving Gait Pattern Prediction Based on Gait Feature Transitions

    Tsuyoshi HIGASHIGUCHI  Norimichi UKITA  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/07/20
      Vol:
    E101-D No:10
      Page(s):
    2501-2508

    This paper proposes a method for predicting individuality-preserving gait patterns. Physical rehabilitation can be performed using visual and/or physical instructions by physiotherapists or exoskeletal robots. However, a template-based rehabilitation may produce discomfort and pain in a patient because of deviations from the natural gait of each patient. Our work addresses this problem by predicting an individuality-preserving gait pattern for each patient. In this prediction, the transition of the gait patterns is modeled by associating the sequence of a 3D skeleton in gait with its continuous-value gait features (e.g., walking speed or step width). In the space of the prediction model, the arrangement of the gait patterns are optimized so that (1) similar gait patterns are close to each other and (2) the gait feature changes smoothly between neighboring gait patterns. This model allows to predict individuality-preserving gait patterns of each patient even if his/her various gait patterns are not available for prediction. The effectiveness of the proposed method is demonstrated quantitatively. with two datasets.

  • Classification of Gait Anomaly due to Lesion Using Full-Body Gait Motions

    Tsuyoshi HIGASHIGUCHI  Toma SHIMOYAMA  Norimichi UKITA  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/01/10
      Vol:
    E100-D No:4
      Page(s):
    874-881

    This paper proposes a method for evaluating a physical gait motion based on a 3D human skeleton measured by a depth sensor. While similar methods measure and evaluate the motion of only a part of interest (e.g., knee), the proposed method comprehensively evaluates the motion of the full body. The gait motions with a variety of physical disabilities due to lesioned body parts are recorded and modeled in advance for gait anomaly detection. This detection is achieved by finding lesioned parts a set of pose features extracted from gait sequences. In experiments, the proposed features extracted from the full body allowed us to identify where a subject was injured with 83.1% accuracy by using the model optimized for the individual. The superiority of the full-body features was validated in in contrast to local features extracted from only a body part of interest (77.1% by lower-body features and 65% by upper-body features). Furthermore, the effectiveness of the proposed full-body features was also validated with single universal model used for all subjects; 55.2%, 44.7%, and 35.5% by the full-body, lower-body, and upper-body features, respectively.

  • Lower Trunk Acceleration Signals Reflect Fall Risk During Walking

    Yoshitaka OTANI  Osamu AOKI  Tomohiro HIROTA  Hiroshi ANDO  

     
    LETTER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1482-1484

    The purpose of this study is to make available a fall risk assessment for stroke patients during walking using an accelerometer. We assessed gait parameters, normalized root mean squared acceleration (NRMSA) and berg balance scale (BBS) values. Walking dynamics were better reflected in terms of the risk of falls during walking by NRMSA compared to the BBS.

  • Orientation-Compensative Signal Registration for Owner Authentication Using an Accelerometer

    Trung Thanh NGO  Yasushi MAKIHARA  Hajime NAGAHARA  Yasuhiro MUKAIGAWA  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:3
      Page(s):
    541-553

    Gait-based owner authentication using accelerometers has recently been extensively studied owing to the development of wearable electronic devices. An actual gait signal is always subject to change due to many factors including variation of sensor attachment. In this research, we tackle to the practical sensor-orientation inconsistency, for which signal sequences are captured at different sensor orientations. We present an iterative signal matching algorithm based on phase-registration technique to simultaneously estimate relative sensor-orientation and register the 3D acceleration signals. The iterative framework is initialized by using 1D orientation-invariant resultant signals which are computed from 3D signals. As a result, the matching algorithm is robust to any initial sensor-orientation. This matching algorithm is used to match a probe and a gallery signals in the proposed owner authentication method. Experiments using actual gait signals under various conditions such as different days, sensors, weights being carried, and sensor orientations show that our authentication method achieves positive results.

  • A Comparative Study among Three Automatic Gait Generation Methods for Quadruped Robots

    Kisung SEO  Soohwan HYUN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    353-356

    This paper introduces a comparison of three automatic gait generation methods for quadruped robots: GA (Genetic Algorithm), GP (genetic programming) and CPG (Central Pattern Generator). It aims to provide a useful guideline for the selection of gait generation methods. GA-based approaches seek to optimize paw locus in Cartesian space. GP-based techniques generate joint trajectories using regression polynomials. The CPGs are neural circuits that generate oscillatory output from an input coming from the brain. Optimizations for the three proposed methods are executed and analyzed using a Webots simulation of the quadruped robot built by Bioloid. The experimental comparisons and analyses provided herein will be an informative guidance for research of gait generation method.

  • SSM-HPC: Front View Gait Recognition Using Spherical Space Model with Human Point Clouds

    Jegoon RYU  Sei-ichiro KAMATA  Alireza AHRARY  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:7
      Page(s):
    1969-1978

    In this paper, we propose a novel gait recognition framework - Spherical Space Model with Human Point Clouds (SSM-HPC) to recognize front view of human gait. A new gait representation - Marching in Place (MIP) gait is also introduced which preserves the spatiotemporal characteristics of individual gait manner. In comparison with the previous studies on gait recognition which usually use human silhouette images from image sequences, this research applies three dimensional (3D) point clouds data of human body obtained from stereo camera. The proposed framework exhibits gait recognition rates superior to those of other gait recognition methods.

  • Robust Gait-Based Person Identification against Walking Speed Variations

    Muhammad Rasyid AQMAR  Koichi SHINODA  Sadaoki FURUI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    668-676

    Variations in walking speed have a strong impact on gait-based person identification. We propose a method that is robust against walking-speed variations. It is based on a combination of cubic higher-order local auto-correlation (CHLAC), gait silhouette-based principal component analysis (GSP), and a statistical framework using hidden Markov models (HMMs). The CHLAC features capture the within-phase spatio-temporal characteristics of each individual, the GSP features retain more shape/phase information for better gait sequence alignment, and the HMMs classify the ID of each gait even when walking speed changes nonlinearly. We compared the performance of our method with other conventional methods using five different databases, SOTON, USF-NIST, CMU-MoBo, TokyoTech A and TokyoTech B. The proposed method was equal to or better than the others when the speed did not change greatly, and it was significantly better when the speed varied across and within a gait sequence.

  • Kalman-Filtering-Based Joint Angle Measurement with Wireless Wearable Sensor System for Simplified Gait Analysis

    Hiroki SAITO  Takashi WATANABE  

     
    LETTER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E94-D No:8
      Page(s):
    1716-1720

    The aim of this study is to realize a simplified gait analysis system using wearable sensors. In this paper, a joint angle measurement method using Kalman filter to correct gyroscope signals from accelerometer signals was examined in measurement of hip, knee and ankle joint angles with a wireless wearable sensor system, in which the sensors were attached on the body without exact positioning. The lower limb joint angles of three healthy subjects were measured during gait with the developed sensor system and a 3D motion measurement system in order to evaluate the measurement accuracy. Then, 10 m walking measurement was performed under different walking speeds with a healthy subject in order to find the usefulness of the system as a simplified gait analysis system. The joint angles were measured with reasonable accuracy, and the system showed joint angle changes that were similar to those shown in a previous report as walking speed changed. It would be necessary to examine the influence of sensor attachment position and method for more stable measurement, and also to study other parameters for gait evaluation.

  • Design and Implementation of Pedestrian Dead Reckoning System on a Mobile Phone

    Daisuke KAMISAKA  Shigeki MURAMATSU  Takeshi IWAMOTO  Hiroyuki YOKOYAMA  

     
    PAPER

      Vol:
    E94-D No:6
      Page(s):
    1137-1146

    Pedestrian dead reckoning (PDR) based on human gait locomotion is a promising solution for indoor location services, which independently determine the relative position of the user using multiple sensors. Most existing PDR methods assume that all sensors are mounted in a fixed position on the user's body while walking. However, it is inconvenient for a user to mount his/her mobile phone or additional sensor modules in a specific position on his/her body such as the torso. In this paper, we propose a new PDR method and a prototype system suitable for indoor navigation systems on a mobile phone. Our method determines the user's relative position even if the sensors' orientation relative to the user is not given and changes from moment to moment. Therefore, the user does not have to mount the mobile phone containing sensors on the body and can carry it in a natural way while walking, e.g., while swinging the arms. Detailed algorithms, implementation and experimental evaluation results are presented.

  • A Hybrid HMM/Kalman Filter for Tracking Hip Angle in Gait Cycle

    Liang DONG  Jiankang WU  Xiaoming BAO  

     
    LETTER-Biological Engineering

      Vol:
    E89-D No:7
      Page(s):
    2319-2323

    Movement of the thighs is an important factor for studying gait cycle. In this paper, a hybrid hidden Markov model (HMM)/Kalman filter (KF) scheme is proposed to track the hip angle during gait cycles. Within such a framework, HMM and KF work in parallel to estimate the hip angle and detect major gait events. This approach has been applied to study gait features of different subjects and compared with video based approach. Experimental results indicate that 1.) the swing angle of the hip can be detected with simple hardware configuration using biaxial accelerometers and 2.) the hip angle can be tracked for different subjects within the error range of -5°+5°.

  • Design of Fuzzy Controller of the Cycle-to-Cycle Control for Swing Phase of Hemiplegic Gait Induced by FES

    Achmad ARIFIN  Takashi WATANABE  Nozomu HOSHIMIYA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E89-D No:4
      Page(s):
    1525-1533

    The goal of this study was to design a practical fuzzy controller of the cycle-to-cycle control for multi-joint movements of swing phase of functional electrical stimulation (FES) induced gait. First, we designed three fuzzy controllers (a fixed fuzzy controller, a fuzzy controller with parameter adjustment based on the gradient descent method, and a fuzzy controller with parameter adjustment based on a fuzzy model) and two PID controllers (a fixed PID and an adaptive PID controllers) for controlling two-joint (knee and ankle) movements. Control capabilities of the designed controllers were tested in automatic generation of stimulation burst duration and in compensation of muscle fatigue through computer simulations using a musculo-skeletal model. The fuzzy controllers showed better responses than the PID controllers in the both control capabilities. The parameter adjustment based on the fuzzy model was shown to be effective when oscillating response was caused due to the inter-subject variability. Based on these results, we designed the fuzzy controller with the parameter adjustment realized using the fuzzy model for controlling three-joint (hip, knee, and ankle) movements. The controlled gait pattern obtained by computer simulation was not significantly different from the normal gait pattern and it could be qualitatively accepted in clinical FES gait control. The fuzzy controller designed for the cycle-to-cycle control for multi-joint movements during the swing phase of the FES gait was expected to be examined clinically.