The search functionality is under construction.

Keyword Search Result

[Keyword] instrumentation amplifier(3hit)

1-3hit
  • Design of CMOS Circuits for Electrophysiology Open Access

    Nick VAN HELLEPUTTE  Carolina MORA-LOPEZ  Chris VAN HOOF  

     
    INVITED PAPER

      Pubricized:
    2023/07/11
      Vol:
    E106-C No:10
      Page(s):
    506-515

    Electrophysiology, which is the study of the electrical properties of biological tissues and cells, has become indispensable in modern clinical research, diagnostics, disease monitoring and therapeutics. In this paper we present a brief history of this discipline and how integrated circuit design shaped electrophysiology in the last few decades. We will discuss how biopotential amplifier design has evolved from the classical three-opamp architecture to more advanced high-performance circuits enabling long-term wearable monitoring of the autonomous and central nervous system. We will also discuss how these integrated circuits evolved to measure in-vivo neural circuits. This paper targets readers who are new to the domain of biopotential recording and want to get a brief historical overview and get up to speed on the main circuit design concepts for both wearable and in-vivo biopotential recording.

  • Subblock-Level Matching Layout for Analog Block-Pair and Its Layout-Dependent Manufacturability Evaluation

    Takuya HIRATA  Ryuta NISHINO  Shigetoshi NAKATAKE  Masaya SHIMOYAMA  Masashi MIYAGAWA  Ryoichi MIYAUCHI  Koichi TANNO  Akihiro YAMADA  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1381-1389

    This paper presents a layout-dependent manufacturability for analog integrated circuits. We focus on the relative variability of an input op-amp-pair used in an instrumentation amplifier (in-amp). We propose a subblock-level matching layout style such that subblocks of the op-amp-pair are superimposed aiming to suppress the relative variability dependent on the layout. We fabricate chips according to five superposed layout styles and evaluate the relative variability in terms of the DC-offset, so that we demonstrate the most effective layout style. Besides, we provide a manufacturability simulation methodology to evaluate the in-amp considering the relative variability of the op-amp-pair based on the measurement results. Comparing the simulation result and the performances of fabricated in-amps, we are convinced our methodology can evaluate the layout-dependency of the manufacturability by the simulation.

  • An Ultra-Low Voltage Analog Front End for Strain Gauge Sensory System Application in 0.18 µm CMOS

    Alexander EDWARD  Pak Kwong CHAN  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:4
      Page(s):
    733-743

    This paper presents analysis and design of a new ultra-low voltage analog front end (AFE) dedicated to strain sensor applications. The AFE, designed in 0.18 µm CMOS process, features a chopper-stabilized instrumentation amplifier (IA), a balanced active MOSFET-C 2nd order low pass filter (LPF), a clock generator and a voltage booster which operate at supply voltage (Vdd) of 0.6 V. The designed IA achieves 30 dB of closed-loop gain, 101 dB of common-mode rejection ratio (CMRR) at 50 Hz, 80 dB of power-supply rejection ratio (PSRR) at 50 Hz, thermal noise floor of 53.4 nV/, current consumption of 14 µA, and noise efficiency factor (NEF) of 9.7. The high CMRR and rail-to-rail output swing capability is attributed to a new low voltage realization of the active-bootstrapped technique using a pseudo-differential gain-boosting operational transconductance amplifier (OTA) and proposed current-driven bulk (CDB) biasing technique. An output capacitor-less low-dropout regulator (LDO), with a new fast start-up LPF technique, is used to regulate this 0.6 V supply from a 0.8–1.0 V energy harvesting power source. It achieves power supply rejection (PSR) of 42 dB at frequency of 1 MHz. A cascode compensated pseudo differential amplifier is used as the filter's building block for low power design. The filter's single-ended-to-balanced converter is implemented using a new low voltage amplifier with two-stage common-mode cancellation. The overall AFE was simulated to have 65.6 dB of signal-to-noise ratio (SNR), total harmonic distortion (THD) of less than 0.9% for a 100 Hz sinusoidal maximum input signal, bandwidth of 2 kHz, and power consumption of 51.2 µW. Spectre RF simulations were performed to validate the design using BSIM3V3 transistor models provided by GLOBALFOUNDRIES 0.18 µm CMOS process.