The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] latching(4hit)

1-4hit
  • A High-Speed Interface Based on a Josephson Latching Driver for Adiabatic Quantum-Flux-Parametron Logic

    Fumihiro CHINA  Naoki TAKEUCHI  Hideo SUZUKI  Yuki YAMANASHI  Hirotaka TERAI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Pubricized:
    2021/12/03
      Vol:
    E105-C No:6
      Page(s):
    264-269

    The adiabatic quantum flux parametron (AQFP) is an energy-efficient, high-speed superconducting logic device. To observe the tiny output currents from the AQFP in experiments, high-speed voltage drivers are indispensable. In the present study, we develop a compact voltage driver for AQFP logic based on a Josephson latching driver (JLD), which has been used as a high-speed driver for rapid single-flux-quantum (RSFQ) logic. In the JLD-based voltage driver, the signal currents of AQFP gates are converted into gap-voltage-level signals via an AQFP/RSFQ interface and a four-junction logic gate. Furthermore, this voltage driver includes only 15 Josephson junctions, which is much fewer than in the case for the previously designed driver based on dc superconducting quantum interference devices (60 junctions). In measurement, we successfully operate the JLD-based voltage driver up to 4 GHz. We also evaluate the bit error rate (BER) of the driver and find that the BER is 7.92×10-10 and 2.67×10-3 at 1GHz and 4GHz, respectively.

  • Thermally Controlled Magnetization Actuator for Microrelays

    Etsu HASHIMOTO  Hidenao TANAKA  Yoshio SUZUKI  Yuji UENISHI  Akinori WATABE  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    239-245

    A thermally controlled magnetization actuator (TCMA) is proposed for micro-mechanical relays. It is actuated by changing the local magnetization of the structure by remote heating using a laser beam. It is fabricated by nickel surface micromachining (a fabrication technique using nickel electroplating). The optical power of the laser diode used to drive the TCMA is about 30 mW. The switching time of the microrelay was experimentally measured to be 10 ms, the same as that of a conventional mechanical relay. The contact force was calculated to be 20 µN, which can be improved by increasing the size of the TCMA.

  • Compact Latching Type Single-Mode Fiber Switches and Their Applications in Subscriber Loop Networks

    Shinji NAGAOKA  

     
    PAPER

      Vol:
    E80-C No:1
      Page(s):
    149-153

    This paper describes the design, characteristics, and applications of newly developed latching-type 1 2 and 1 8 single-mode fiber switches. These switches have been successfully fabricated using micromachine technology. To reduce insertion loss and light reflection, an index-matching oil is injected into the switches. The fabricated 1 2 switches exhibit a low insertion loss of 0.31 dB, high return loss of 51 dB, relatively fast switching speed of 2 ms, and low driving power of 9 mw. Switching operation is stable over 108 switching times. A practical 1 8 single-mode fiber switch was also constructed using seven 1 2 switches cascaded in three stages. The fabricated 1 2 and 1 8 switches have been applied to an NTT multichannel video distribution FTTH system to enhance system reliability.

  • Electrostatic Actuator with Electret

    Mitsuo ICHIYA  Fumihiro KASANO  Hiromi NISHIMURA  Jacques LEWINER  Didier PERINO  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    128-131

    In this paper, an electrostatic actuator with electret is proposed. Electrets are the electrical equivalent of magnets. They are dielectric's carrying a non equilibrium permanent space charge or polarization distribution. This distribution can create either an external electric field or internal properties such as piezo or pyroelectricity. In the first case it is possible to make new types of electrostatic actuators by the external electric field. An electrostatic relay with electret is fabricated to demonstrate the possibility of an electrostatic actuator with electret. The size of relay is 5.2 mm11.5 mm. Its amature beam is 50 µm thick, 2.9 mm wide, 6.3 mm long, and acts as a moving electrode. Facing it, the stationary electrode is 20 µm away from the moving electrode. On the stationary electrode, new type of electret made from SiO2 is deposited. We have succeeded in making the armature operate at low applied voltage 20 V. On the same structure without electret, we need more than 120 V to make the same armature operation. We have also succeeded in making the armature latching.