The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] magnet(669hit)

581-600hit(669hit)

  • Electromagnetic Radiation Noise from Surface Gas Discharges-Mechanisms of Propagation, Coupling and Formation

    Keiichi UCHIMURA  Shuichi NITTA  Jen-Shih CHANG  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    490-496

    Surface discharge is widely used for industrial ozonizers and toxic gas treatments, and is noise source. In this paper, an experimental investigation from the point of view of electromagnetic compatibility (EMC) has been conducted to evaluate the noise characteristics of surface discharge combustion flue gas cleaning systems. Mechanisms of propagation, coupling and formation are proposed based on the experimental observations.

  • Segmentation of Brain MR Images Based on Neural Networks

    Rachid SAMMOUDA  Noboru NIKI  Hiromu NISHITANI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:4
      Page(s):
    349-356

    In this paper, we present some contributions to improve a previous work's approach presented for the segmentation of magnetic resonance images of the human brain, based on the unsupervised Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of errors' squares, and the second term is a temporary noise added to the cost-term as an excitation to the network to escape from certain local minimums and be more close to the global minimum. Also, to ensure the convergence of the network and its utility in clinic with useful results, the minimization is achieved with a step function permitting the network to reach its stability corresponding to a local minimum close to the global minimum in a prespecified period of time. We present here our approach segmentations results of a patient data diagnosed with a metastatic tumor in the brain, and we compare them to those obtained based on, previous works using Hopfield neural networks, Boltzmann machine and the conventional ISODATA clustering technique.

  • Sensing Device for In-Line EMI Checker of Small Electric Appliances

    Toshiaki KOIZUMI  Kumio TAKAHASHI  Shun SUZUKI  Hideaki SONE  Yoshiaki NEMOTO  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    509-514

    This paper discusses the design of a small sensing device for EMI measurement which has equivalent characteristics to the absorbing clamp method, and reports the results on evaluation of the device. The device can be applied to the inspection apparatus for products such as power tools to examine conformance to EMI regulations of electromagnetic radiation spectrum. For reducing the scale of the EMI inspection apparatus, new matching circuit being replaced with the absorbing clamp method is adopted in the sensing device. Length of the sensing device is smaller than one twelfth of a wavelength of the measuring frequency in order to regard the sensing device as a concentrated constant circuit. The matching circuit is a resonant circuit which consists of a coaxial coupled transformer and a variable capacitor, and the transformer is a spiral copper tube in which a pair of AC power line wires passes. Resonant frequency of the circuit is tuned to the measuring frequency by adjusting the variable capacitor so that the circuit would terminate the power line by impedance zero. Thus interference current propagating along the power line from a product is absorbed, and observed by means of a VHF current probe which is settled in the matching circuit. A simple circuit for measurement of noise amplitude distribution (NAD) of interference current was developed as well as an equation to estimate quasi-peak value from the NAD. Result of measurement by the sensing device and proposed procedure confirmed good correlation with the standard absorbing clamp method, and deviation was within 3dB. Measurement time was reduced to 25 s per product, and the in-line EMI checker with new sensing device can be employed in a mass production line.

  • A Portable Magnetic-Noise Free Visual Stimulator for MEG Measurements

    Kazumi ODAKA  Toshiaki IMADA  Takunori MASHIKO  Minoru HAYASHI  

     
    LETTER-Medical Electronics and Medical Information

      Vol:
    E79-D No:2
      Page(s):
    165-169

    This letter shows that a portable visual stimulator for MEG measurements can be realized using an optical fiber bundle and a CRT display system offering high brightness and high speed raster scanning, and that MEGs with neither magnetic contamination nor jitter can be measured by the stimulator.

  • TM-Scattering from Notches in a Parallel-Plate Waveguide

    Kyung H. PARK  Hyo J. EOM  Kazunori UCHIDA  

     
    LETTER-Communication Cable and Wave Guides

      Vol:
    E79-B No:2
      Page(s):
    202-204

    The problem of TM-mode scattering from the finite number of rectangular notches in a parallel plate waveguide is considered. The Fourier-transform is employed to obtain simultaneous equations and the simultaneous equations are solved to obtain an analytic solution in rapidly-convergent series. Numerical computations are performed to investigate the scattering behavior in terms of frequency and notch sizes. The presented theory is applicable to the analysis of scattering from the E-plane stubs in the rectangular waveguide.

  • Near Fields Radiated from a Long Slot on a Circular Conducting Cylinder

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E79-C No:2
      Page(s):
    249-251

    New series expressing the radiation fields from both axial and circumferential slots on a circular conducting cylinder are derived. These new series converge rapidly even for near fields. This letter includes useful figures showing characteristics of near fields calculated numerically using the new series.

  • Control of Soft Magnetism of Co-Zr and Co-Zr-Ta Films for Backlayers in Perpendicular Magnetic Recording Media

    Shigeki NAKAGAWA  Masahiko NAOE  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1557-1561

    Co-Zr and Co-Zr-Ta amorphous films were prepared by the Kr sputtering method for use as the backlayers of Co-Cr perpendicular magnetic recording tape media. The effect of the addition of Ta to Co-Zr thin films was also investigated. Lower substrate temperature was required to prepare amorphous Co-Zr films with excellent soft magnetic properties. The relationships among Ta content X, magnetostriction constant λ and magnetic characteristics such as coercivity Hc and relative permeability µr were clarified. A method of evaluating λ of soft magnetic thin films deposited on polymer sheet substrate has been presented. Films with composition of (Co95.7Zr4.3) 100-X TaX at X of 10 at.% possessed sufficiency soft magnetic properties such as low Hc below 80 A/m and high µr above 600. Addition of Ta was effective in changing change the sign of λ from positive to negative. It was found that the negative magnetoelastic energy and the smaller λ caused the soft magnetism.

  • Micromagnetic Simulation of Recording Media and Magnetoresistive Heads

    Kazuetsu YOSHIDA  Yasutaro UESAKA  Kazuhisa FUJIMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1509-1516

    A three-dimensional micromagnetic simulation using the Landau-Lifshitz-Gilbert equation was performed for thin-film magnetic recording media and magnetoresistive (MR) heads with soft adjacent layers (SAL). For recording media the simulation results for magnetization curves and media noise were compared with the results of experiments. Although the media model needs to be improved, the qualitative agreement between simulation results and experimental results shows that this micromagnetic simulation can be a useful tool for analyzing and predicting magnetic properties and recording characteristics. This work also showed that media noise is influenced by magnetostatic interaction, and that the decrease of the magnetostatic interaction is favorable for obtaining a high signal-to-noise ratio. For an MR head the output obtained with a nonuniform sense current distribution is similar to the output obtained with uniform sense current distribution for both low and high anisotropy fields (Hk=2 Oe and 10 Oe) SAL. With the low Hk SAL, however, the asymmetry of the output obtained for nonuniform sense current differs from the asymmetry obtained for uniform sense current; the difference is due to a magnetization vortex in a biased state in the SAL. With the high Hk SAL, the difference between the asymmetry obtained for nonuniform sense current and the one obtained for uniform sense current is not large; no vortices are found in the SAL at the biased state.

  • Trial for Deep Submicron Track Width Recording

    Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1517-1522

    Extremely narrow track width of deep submicron range is examined in perpendicular magnetic recording. Head field distribution of a single-pole head analyzed by 3-dimensional computer simulation results in a sharp gradient, but relatively large cross-sectional area is required to maintain head field strength. Based on this design concept, a lateral single-pole head is described and proved to attain track width of 0.4 µm. In addition, multilevel partial response appropriate to the new multitrack recording system is proposed.

  • Magnetic Properties of Electroless-Deposited NiFeB and Electrodeposited NiFe Alloy Thin Films

    Madoka TAKAI  Kensuke KAGEYAMA  Sanae TAKEFUSA  Akiyoshi NAKAMURA  Tetsuya OSAKA  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1530-1535

    The magnetic properties and the structure of electroless-deposited NiFeB films were investigated in comparison with those of electrodeposited NiFe films. The electroless-deposited NiFeB film with 27at% Fe content had the lowest coercivity, H, as low as 0.5 Oe with a saturation magnetic flux density, Bs, of 1.0 T. The saturation magnetostriction, λ, and the uniaxial magnetic anisotropy, Hk, were 5.010-6 and 10 Oe, respectively, which were larger than those of the conventional, electrodeposited permalloy film. The permeability of as-deposited Ni70Fe27B3 film was 1000 at 1 MHz. In order to improve the permeability, the film was heated at 200 in a magnetic field applied in the hard-axis direction to decrease the Hk value, and the permeability became 2000 at 1 MHz. The crystal structure and grain size of NiFeB and NiFe films were investigated by XRD, THEED and TEM. Both films with low Hc had an fcc structure; the grain size of the NiFeB film was smaller than 10 nm, while that of the NiFe film was larger, approximately 20 nm. The results suggested that the electroless-deposited NiFeB film had a larger magnetic anisotropy than the electrodeposited NiFe film. Moreover, the films with Hc less than 10 Oe ded not show clear difference between their TEM bright images and THEED patterns.

  • Simplification of Viterbi Algorithm for (1, 7) RLL Code

    Yoshitake KURIHARA  Hisashi OSAWA  Yoshihiro OKAMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1567-1574

    Simplification of the Viterbi algorithm and the error rate performance are presented for a partial response maximum-likelihood (PRML) system employing the PR(1, 1) system as a PR system for (1, 7) run-length limited (RLL) code. The minimum run-length of 1's or O's in the output sequence of the precoder for (1, 7) RLL code is limited to 2. Two kinds of simplified Viterbi algorithms using this run-length constraint are proposed. One algorithm requires the path memory length of only two in the Viterbi detector. The Viterbi detector based on the other algorithm is equivalent to the simple PR(1, 1) system followed by a threshold detector. The bit-error rates of PRML systems with Viterbi detectors based on these algorithms are obtained by computer simulation and their performance is compared with that of conventional PRML systems for (1, 7) RLL code. It is shown that the proposed PRML system exhibits better performance than conventional PRML systems at high recording density.

  • Effects of In-Plane Hard Magnetic Layer on Demagnetization and Media Noise in Triple-Layered Perpendicular Recording Media

    Toshio ANDO  Makoto MIZUKAMI  Toshikazu NISHIHARA  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1543-1549

    The authors have studied the demagnetization phenomenon which is observed in a conventional CoCrTa/CoZrNb double-layered (DL) perpendicular recording medium. The authors have also investigated the effects of an in-plane hard magnetic layer in a triple-layered (TL) perpendicular recording medium. The in-plane hard magnetic underlayer is made of CoSm or CoCrTa/Cr and is laid under the CoZrNb soft magnetic layer. In the DL medium, a demagnetization phenomenon i.e. decrease of the readback signal, is observed when the CoCrTa layer has a strong perpendicular orientation and the CoZrNb underlayer has a low coercivity. The amount of the signal decrease depends strongly on the accumulated disk revolutions. This demagnetization is considered to be caused by fact that the recorded magnetization in the CoCrTa layer is reduced by the magnetic field generated from the domain walls in the CoZrNb layer, since the CoZrNb layer is very sensitive to a magnetic environment such as geo-magnetism and domain walls move as the disk rotates. On the other hand in the TL medium, the hard magnetic layer has an effect of pinning the magnetic domain in the CoZrNb layer, by which the demagnetization problem is successfully prevented. The hard magnetic layer remarkably reduces the domain walls in the CoZrNb layer and contributes to medium noise reduction. Thus the TL medium presents a higher SN ratio than DL medium.

  • Future Technology Trends on Magneto-Optical Recording

    Fumio KUGIYA  Takeshi MAEDA  Masahiko TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E78-C No:11
      Page(s):
    1499-1508

    Computer circumstance have changed drastically, and larger capacity removable media is indispensable. Magneto-optical disk is promising candidate to satisfy computer user's needs. In this report, future perspective of high density magneto-optical recording technology is investigated.

  • Extremely High-Density Magnetic Information Storage--Outlook Based on Analyses of Magnetic Recording Mechanisms--

    Yoshihisa NAKAMURA  

     
    INVITED PAPER

      Vol:
    E78-C No:11
      Page(s):
    1477-1492

    Tremendous progress has been made in magnetic data storage by applying theoretical considerations to technologies accumulated empirically through a great deal of research and development. In Japan, the recording demagnetization phenomenon was eagerly analyzed by many researchers because it was a serious problem in analogue signal recording such as video tape recording using a relatively thick magnetic recording medium. Consequently, perpendicular magnetic recording was proposed as a method for extremely high-bit-density recording. This paper describes the theoretical background which has resulted in the idea of perpendicular magnetic recording. Furthermore, the possibility of magnetic recording is discussed on the basis of the results obtained theoretically by magnetic recording simulators. Magnetic storage has the potential for extremely high-bit-density recording exceeding 1 Tb/cm2. We propose the idea of 'spinic data storage' in which binary digital data could be stored into each ferromagnetic single-domain columnar particle when the perpendicular magnetizing method is used.

  • Point Magnetic Recording Using a Force Microscope Tip on Co-Cr Perpendicular Media with Compositionally Separated Microstructures

    Toshifumi OHKUBO  Yasushi MAEDA  Yasuhiro KOSHIMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1523-1529

    A soft magnetic force microscope (MFM) tip was used to evaluate the magnetic recording characteristics of compositionally separated Co-Cr perpendicular media. Small magnetic bits were recorded on thick (350 nm). and thin (100 nm) films, focusing on the fineness of compositionally separated microstructures. MFM images showed bit marks 230 and 150 nm in diameter, measured at full-width at half maximum (FWHM) for the thick and thin films, respectively. These results verify that the recordable bit size can be decreased by using a thinner film with a finer compositionally separated microstructure. Simulation was used to clarify the relationship between the actual sizes of the recorded bits and the sizes of their MFM images. The recorded bit size was found to closely correspond to the FWHM of the MFM bit images.

  • The Dependence of Bit Error Rate on Lens Tilt and Disk Tilt for Magneto-Optical Heads

    Tsutomu MATSUI  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1591-1595

    Tilt margins for disk and lens for a magneto-optical (MO) head were studied for designing a disk system for use with objective lenses having numerical apertures (NA) of 0.55, 0.60, and 0.65. The tilt margins were examined to determine the aberration characteristics of objective lenses and bit error rate (BER) by recording and reproducing signal. In preparing the optical head for testing disk and lens tilt margins, the aberrations were measured by image processing from the CCD area sensor for the spot image of the focused beam, and BER dependencies on the tilting of lens and disk were obtained at the velocity of the outer diameter of the MO disk at the bit rate of 80-Mbps (1, 7 code modulation) recording. According to the aberration and BER characteristics, the limitation for effective wavefront aberration would be 0.05λ rms, the tilt margins corresponded to BER limitation at the level of 3*10-5. The disk margins for NA=0.55, 0.6, and 0.65 were 0.4, 0.2, and 0.1 degrees. The lens tilt margins for NA=0.55, 0.6, and 0.65 were 0.2, 0.1, and 0.05 degrees.

  • Development of Particulate Recording Media with Ultrathin Magnetic Layer

    Hiroo INABA  Shinji SAITOH  Toshiyuki KITAHARA  Akira KASHIWAGI  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1536-1542

    A particulate recording medium with an ultrathin magnetic layer is presented in this paper. This medium consists of a magnetic layer and a nonmagnetic underlayer composed of very fine titanium dioxide powder. When metal powder was employed, we observed the anticipated advantages of decreasing the thickness of the magnetic layer in tapes and diskettes. By reducing the layer thickness to below 0.3 µm we were able to increase the reproduced output at short wavelengths, and improve both the overwrite erasability and the D50. There was also a decrease in the half peak width of an isolated pulse and a peak shift. Tribological advantages were also observed with this medium. When barium ferrite was employed as the magnetic powder, we observed that the modulation noise of thin-layer barium ferrite medium was less than that of a thinlayer MP medium while it generated an output as high as that of the MP medium. The advantages of the barium ferrite medium lie in its two-layer construction. Particulate media will continue to develop as magnetic powder is improved mainly in terms of its size, saturation magnetization, and coercivity.

  • Scattering of Electromagnetic Wave by Double Periodic Array with a Dielectric Substrate

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Jiro YAMAKITA  

     
    LETTER

      Vol:
    E78-A No:11
      Page(s):
    1545-1547

    In this paper, electromagnetic scattering by infinite double two-dimensional periodic array of resistive upper and lower elements is considered. The electric field equations are solved by using the moment method in the spectral domain. Some numerical results are shown and frequency selective properties are discussed.

  • Principles of Radar Polarimetry

    Ernst LÜNEBURG  

     
    INVITED PAPER

      Vol:
    E78-C No:10
      Page(s):
    1339-1345

    Research in radar polarimetry is hampered by shortcomings of the conventional formulation of polarimetric backscatter concepts. In particular the correct form of the Sinclair backscatter matrix under changes of polarization bases is derived from the antenna voltage (energy transfer) equation yielding the erroneous impression that radar polarimetry is a mongrel between scattering behavior and network performance. The present contribution restores logical consistency in a natural way by introducing the concept of an antilinear backscatter operator. This approach decouples scattering process and network performance, illuminates matrix analytical properties of the radar backscatter matrix and highlights characteristic states of polarization.

  • Optical Constants of Magnetic Fluids and Their Application to Optical Switches

    Mitsunori SAITO  Makoto TAKAKUWA  Mitsunobu MIYAGI  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:10
      Page(s):
    1465-1469

    The complex refractive indices n-jχ of typical magnetic fluids were evaluated for the sake of utilizing them as optical materials. Transmission and reflection spectra were measured in the wavelength range of 0.6-1.6 µm by using monochromators. Magnetic fluids were put into glass cells of 2.5-14-µm thickness for transmission measurement. Due to the absorption by magnetic fluids, the transmittance decreased notably with the increase of the sample thickness. The extinction coefficient χ was evaluated from the dependence of the transmittance on the sample thickness. χ was found to vary between 0.003 and 0.03 depending upon wavelength. The refractive index n was evaluated by fitting theoretical curves to the reflectances that were measured for various incident angles. n was found to vary between 1.6 and 1.7 depending slightly on wavelength. Since a magnetic fluid is a composite of ferrite particles and a solvent, the refractive index can be calculated by using the effective medium theory. The calculated value agreed well with the experimental value. Preliminary experiment of optical switching was also demonstrated by utilizing the mobility of a magnetic fluid.

581-600hit(669hit)