The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] magnetic(575hit)

561-575hit(575hit)

  • Polarization Characteristics of Plane Waves Scattered by a Strip Grating with an Anisotropic Substrate

    Masamitsu ASAI  Jiro YAMAKITA  Shinnosuke SAWA  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1765-1767

    In this paper, scattering waves by a strip grating with an anisotropic substrate for the incidence of inclined polarization are analyzed, and polarization characteristics of scatterd waves are calculated. For simplicity, the analysis is limitted to the case of normal incidence and a perfectly conducting strip grating is assumed.

  • Scattering from Conductor or Complementary Aperture Array on a Semi-infinite Substrate

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Shinnosuke SAWA  Hiroshi NAKASHIMA  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1762-1764

    Frequency Selective Screens (FSS) with conductor or complementary aperture array are investigated. The electric current distribution on conductor or the magnetic current distribution on aperture is determined by the moment method in the spectral domain. In addition, the power reflection coefficients are calculated and the scattering properties are considered.

  • Planar Inductor for Very Small DC-DC Converters

    Toshiro SATO  Michio HASEGAWA  Tetsuhiko MIZOGUCHI  Masashi SAHASHI  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1186-1191

    A newly developed planar inductor and its application to dc-dc converters are described. The planar inductor consists of a planar spiral coil and soft magnetic sheets, it has a small size (11110.8mm), 33µH inductance and a maximum quality factor of 14. The step down chopper dc-dc converter has been developed by using planar inductor, which has small size (20154mm), 5V-2W typical output and output power/volume ratio of 1.7W/cc. The switching converter can be miniaturized by using the planar inductor.

  • An Efficient Reconstruction Algorithm for Diffraction Tomography

    Haruyuki HARADA  Takashi TAKENAKA  Mitsuru TANAKA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:11
      Page(s):
    1387-1394

    An efficient reconstruction algorithm for diffraction tomography based on the modified Newton-Kantorovich method is presented and numerically studies. With the Fréchet derivative obtained for the Helmholtz equation, one can derive an iterative formula for getting an object function, which is a function of refractive index of a scatterer. Setting an initial guess of the object function to zero, the pth estimate of the function is obtained by performing the inverse Fourier transform of its spectrum. Since the spectrum is bandlimited within a low-frequency band, the algorithm does not require usual regularization techniques to circumvent ill-posedness of the problem. For numerical calculation of the direct scattering problem, the moment method and the FFT-CG method are utilized. Computer simulations are made for lossless and homogeneous dielectric circular cylinders of various radii and refractive indices. In the iteration process of image reconstruction, the imaginary part of the object function is set to zero with a priori knowledge of the lossless scatterer. Then the convergence behavior of the algorithm remarkably gets improved. From the simulated results, it is seen that the algorithm provides high-quality reconstructed images even for cases where the first-order Born approximation breaks down. Furthermore, the results demonstrate fast convergence properties of the iterative procedure. In particular, we can successfully reconstruct the cylinder of radius 1 wavelength and refractive index that differs by 10% from the surrounding medium. The proposed algorithm is also effective for an object of larger radius.

  • Characteristics of Gas Sensors Using Magnetic Semiconductor Thick Film

    Kyoshiro SEKI  Michiru HORI  Hiroshi OSADA  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E75-C No:10
      Page(s):
    1291-1293

    The preparation of magnetic semiconductor thick film (MST) by means of spray printing and application to a temperature/gas/essence sensor have been proposed. The MST pattern is composed of ferrite, ruthenium compound, carbon black, binder and solvent. After the mixed mgnetic semiconductor fluid is sprayed on a substrate, the sample is sintered at 750. The MST with thickness of 40 µm is printed on the substrate in various shapes such as a plate, a ring or a rod. The magnetic property of MST depends on temperature, and the electrical property responds to gas and natural/artificial fruit essence. Therefore, the multipore ceramic MST operates as a gas sensor with high sensitivity and high stability.

  • Polarization Discriminating Characteristics of a Double Strip Grating Loaded with a Dielectric Slab

    Akira MATSUSHIMA  Tokuya ITAKURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:9
      Page(s):
    1071-1079

    An accurate numerical solution is presented for the electromagnetic scattering from infinite strip gratings attached to both sides of a dielectric slab. This structure is a model of polarization discriminating devices. The period of the strips is common to both planes, but the widths and the axes may be different. The direction of propagation and the polarization of an incident plane wave are arbitray. We derive a set of singular integral equations and solve it by the moment method, where the Chebyshev polynomials are successfully used as the basis and the testing functions. This method is accurate and effective owing to the incorporation of the edge condition and the decomposition of the kernel functions into the singular and the regular parts. Numerical calculations are carried out for the purpose of designing polarization discriminators, and it is shown that the band width is widened by decreasing the permittivity of the slab. The cross-polarization characteristics at skew incidence are also discussed.

  • Finite-Difference Beam-Propagation Method for Circularly Symmetric Fields

    Junji YAMAUCHI  Morihiko IKEGAYA  Takashi ANDO  Hisamatsu NAKANO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E75-C No:9
      Page(s):
    1093-1095

    Analysis of the propagation of circularly symmetric fields is made using the finite-difference beam-propagation method. After testing the accuracy of this method, we analyze the guided-mode transmission of connected fibers whose core radii are different. The propagation behavior of the unguided-mode field generated at the junction is revealed using a transparent boundary condition.

  • An Improvement of the Equivalent Source Method for the Analysis of Scattering of a Plane Wave by a Conducting Cylinder with Edges

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E75-C No:9
      Page(s):
    1088-1092

    This letter proposes an improvement of the equivalent source method in order to give an accurate solution for the scattering of an electromagnetic plane wave by a conducting cylinder with edges.

  • On Quality Improvement of Reconstructed Images in Diffraction Tomography

    Haruyuki HARADA  Mitsuru TANAKA  Takashi TAKENAKA  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    910-913

    This letter discusses the quality improvement of reconstructed images in diffraction tomography. An efficient iterative procedure based on the modified Newton-Kantorovich method and the Gerchberg-Papoulis algorithm is presented. The simulated results demonstrate the property of high-quality reconstruction even for cases where the first-order Born approximation fails.

  • Analysis of Lightwave Propagation in a Bent Waveguide by the Galerkin Method

    Akihiro MARUTA  Masanori MATSUHARA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:6
      Page(s):
    736-740

    A simple method is developed to analyze a bent waveguide, which is described in the cylindrical coordinate system. By means of this method based on the Galerkin method, the sampling spacing can be chosen arbitrarily and it is possible to treat narrow beams. In addition we introduce the absorber using the graded lossy material. As this lossy absorber can remove the radiation wave from the bend, so we can use the finite computational window. The lightwaves propagating in the uniform bend of the slab waveguide and of the nonlinear slab waveguide are demonstrated.

  • Magnetic Radiations from Harness Wires of Spacecraft

    Minoru TSUTSUI  Hirotsugu KOJIMA  Isamu NAGANO  Hiroaki SATO  Toshimi OKADA  Hiroshi MATSUMOTO  Toshifumi MUKAI  Masayoshi KAWAGUCHI  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    174-182

    Radiation properties of magnetic noise from the harness wires of a spacecraft (GEOTAIL) have been studied experimentally and theoretically. A simulation experiment on the noise radiation using a minimum set of subsystems of the spacecraft has shown that the intensity and the directional patterns of the noise radiation from the wires were largely changed by the existence of a conductive plate near the harness wires. The change in the noise characteristics is explained by eddy currents induced in the conductive plate by the signal current flowing in the wires. The eddy currents distributed in the conductive plate were calculated by the Finite Element analysis Method (FEM). The magnetic flux densities calculated from both the source signal current and its induced eddy currents for the wiring configuration of the simulation experiment have shown to be consistent with the values obtained in the experiment. The results in the present study have provided us an important information on a wiring method to diminish noise radiation from harness wires.

  • Stabilization of Power Line Impedance for Radiated EMI Level Measurement

    Atsuya MAEDA  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    148-156

    It is important to develop methods of measuring radiated electromagnetic interference level that will produce identical results at all measuring locations. We have considered a number of problems which prevent the achievement of identical results, and proposed some solutions. However, agreement of measurement values adequate for practical purposes has not been achieved. After our successive studies, we finally became aware that there is a causal relationship with changes in the line-to-ground impedance of the power supply. It is presumed that power cables of AC-powered devices operate as antenna elements that produce emission. Thus changes in the power line-to-ground impedance cause variations in the radiation efficiency to produce a different EMI level. We therefore made plans to measure the values of line-to-ground impedance at the AC power outlet for the frequency range of 100kHz to 500MHz at various locations where measurements are made of EMI from EUT (Equipment Under Test). The impedance varies greatly between 6ohms and 2 k-ohm, not only according to the frequency, but also according to the measurement location. In such cases, the EMI level shows a different value even with the same EUT, and it usually increases-especially for vertical polarization. We have developed a new type of LISN (Line Impedance Stabilization Network or Artificial Mains Network) to stabilize the power line-to-ground impedance to get consistent measurement conditions. The LISN consists of feed-through capacitors and an disk type RF resistor. The measurements confirm the consistency in the impedance value which is maintained at 50 ohms in the frequency range from 1MHz to 500MHz. Thus the newly developed LISN improves consistency of measurement values at all locations, while it was difficult to obtain good correlation before employing the LISN. We feel confident that incorporation of the method discussed here in the pertinent technical standards of EMI measurements, such as CISPR, would lead to a major improvement in getting consistent measurements values.

  • Anechoic Chambers for EMI Test

    Yasutaka SHIMIZU  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    101-106

    Anechoic chambers have been effectively used for microwave propagation, electromagnetic interference (EMI) and immunity testing. The electromagnetic compatibility (EMC) problem has recently become serious and many of these chambers have been constructed. The results of a questionnaire survey sent to anechoic chamber manufacturers are described that a total of 450 anechoic chambers have been constructed in Japan since 1964. Twenty years ago the purpose of the chambers was microwave propagation research, but more than 50 each year have recently being built for EMC/EMI and immunity testing. Their size has gradually been reduced by the use of absorbing materials such as ferrite with dielectric materials. The lowest frequency of most chambers is 30MHz for the 3 m method of site attenuation.

  • Power-Sum Estimation of Electromagnetic Noise Radiated from High-Speed CMOS Printed Circuit Boards

    Osami WADA  Megumi KOSAKA  Hidemi OKA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    165-173

    A new approach is proposed to evaluate total electromagnetic noise radiated from a printed circuit board (PCB), and a result of experimental verification is given. The purpose is to represent the total radiation noise by summing up noises from elemental sources on a PCB, such as signal traces or ICs. Each of the elemental noise is calculated by an a priori noise model for each component of a PCB. Parameters of each noise model should be determined experimentally. Radiation sources on a digital PCB were found to be not only signal traces between ICs, but also package-side loops each of which is composed of an IC and a decoupling capacitor. Radiation noises from these two kinds of sources were evaluated separately. Experimental PCBs, which are two-layer PCBs mounting a few high-speed CMOS (HC) ICs, were prepared and radiation power from them was measured. Each PCB has a ground plane on one side, which simulates an internal ground plane in a multilayer PCB, and signal traces on it have a configuration of a microstrip transmission line. Electromagnetic noise caused by a high-speed CMOS gate is radiated impulsively during transition time as short as about 10ns. No significant interference was found between the noises from separate traces because each of the noise is impulsive and rarely overlaps each other. It is concluded that the total radiated power is represented by a simple sum of radiations from each traces without any interference to be taken into account.

  • Transient Electromagnetic Fields on a Conducting Sphere Excited by a Pulsed Plane Wave

    Akira ITOH  Toshio HOSONO  Yuuiti HIRAO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:1
      Page(s):
    107-112

    We studied transient fields on a perfectly conducting sphere excited by a half sine pulse wave and examined the Poynting vectors, the energy densities and the energy velocities of the creeping waves. We used FILT (Fast Inversion of Laplace Transform) method for transient analysis. We compared the amplitudes of the creeping wave with that of steady state high frequency approximation obtained by the Watson transformation. The main results are: (1) We confirmed in the transient response that the pulse propagates clockwise and counterclockwise along the geodesic circumference. (2) In the transient electromagnetic field observed in the E-plane we can recognize creeping waves clearly. (3) The existence of creeping waves is not clear in the H-plane. (4) The pulse wave propagation on the sphere is seen more clearly from the Poynting vectors and the energy densities than the field components. (5) The energy velocity of the wave front is equal to the light velocity as should be. The energy velocity of the wave body becomes smaller with the passage of time. (6) The amplitude of the creeping wave for a beat pulse and the amplitude obtained by the Watson transform for mono spectrum agree in the order of relative error below 25%.

561-575hit(575hit)