The search functionality is under construction.

Keyword Search Result

[Keyword] maximum likelihood(142hit)

1-20hit(142hit)

  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Multi-Target Position and Velocity Estimation Algorithm Based on Time Delay and Doppler Shift in Passive MIMO Radar

    Yao ZHOU  Hairui YU  Wenjie XU  Siyi YAO  Li WANG  Hongshu LIAO  Wanchun LI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/05/18
      Vol:
    E105-A No:11
      Page(s):
    1466-1477

    In this paper, a passive multiple-input multiple-output (MIMO) radar system with widely separated antennas that estimates the positions and velocities of multiple moving targets by utilizing time delay (TD) and doppler shift (DS) measurements is proposed. Passive radar systems can detect targets by using multiple uncoordinated and un-synchronized illuminators and we assume that all the measurements including TD and DS have been known by a preprocessing method. In this study, the algorithm can be divided into three stages. First, based on location information within a certain range and utilizing the DBSCAN cluster algorithm we can obtain the initial position of each target. In the second stage according to the correlation between the TD measurements of each target in a specific receiver and the DSs, we can find the set of DS measurements for each target. Therefore, the initial speed estimated values can be obtained employing the least squares (LS) method. Finally, maximum likelihood (ML) estimation of a first-order Taylor expansion joint TD and DS is applied for a better solution. Extensive simulations show that the proposed algorithm has a good estimation performance and can achieve the Cramér-Rao lower bound (CRLB) under the condition of moderate measurement errors.

  • Parameter Estimation of Markovian Arrivals with Utilization Data

    Chen LI  Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/07/08
      Vol:
    E105-B No:1
      Page(s):
    1-10

    Utilization data (a kind of incomplete data) is defined as the fraction of a fixed period in which the system is busy. In computer systems, utilization data is very common and easily observable, such as CPU utilization. Unlike inter-arrival times and waiting times, it is more significant to consider the parameter estimation of transaction-based systems with utilization data. In our previous work [7], a novel parameter estimation method using utilization data for an Mt/M/1/K queueing system was presented to estimate the parameters of a non-homogeneous Poisson process (NHPP). Since NHPP is classified as a simple counting process, it may not fit actual arrival streams very well. As a generalization of NHPP, Markovian arrival process (MAP) takes account of the dependency between consecutive arrivals and is often used to model complex, bursty, and correlated traffic streams. In this paper, we concentrate on the parameter estimation of an MAP/M/1/K queueing system using utilization data. In particular, the parameters are estimated by using maximum likelihood estimation (MLE) method. Numerical experiments on real utilization data validate the proposed approach and evaluate the effective traffic intensity of the arrival stream of MAP/M/1/K queueing system. Besides, three kinds of utilization datasets are created from a simulation to assess the effects of observed time intervals on both estimation accuracy and computational cost. The numerical results show that MAP-based approach outperforms the exiting method in terms of both the estimation accuracy and computational cost.

  • MLSE Based on Phase Difference FSM for GFSK Signals

    Kyu-Man LEE  Taek-Won KWON  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    328-331

    Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The receivers mostly adopt the Viterbi algorithm to improve a bit error rate performance but are hampered by heavy hardware complexity and computational load due to a coherent detection and searching for the unknown modulation index. To address these challenges, a non-coherent maximum likelihood estimation detector with an eight-state Viterbi is proposed for Gaussian frequency-shift keying symbol detection against an irrational modulation index, without any knowledge of prior information or assumptions. The simulation results showed an improvement in the performance compared to other ideal approaches.

  • Simplified Iterative Decoder for Polybinary-Shaped Optical Signals in Super-Nyquist Wavelength Division Multiplexed Systems

    Shuai YUAN  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/11
      Vol:
    E102-B No:4
      Page(s):
    818-823

    In super-Nyquist wavelength division multiplexed systems, performance of forward error correction (FEC) can be improved by an iterative decoder between a maximum likelihood decoder for polybinary shaping and an FEC decoder. The typical iterative decoder includes not only the iteration between the first and second decoders but also the internal iteration within the FEC decoder. Such two-fold loop configuration would increase the computational complexity for decoding. In this paper, we propose the simplified iterative decoder, where the internal iteration in the FEC decoder is not performed, reducing the computational complexity. We numerically evaluate the bit-error rate performance of polybinary-shaped QPSK signals in the simplified iterative decoder. The numerical results show that the FEC performance can be improved in the simplified scheme, compared with the typical iterative decoder. In addition, the performance of the simplified iterative decoder has been investigated by the extrinsic information transfer (EXIT) chart.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Speech Privacy for Sound Surveillance Using Super-Resolution Based on Maximum Likelihood and Bayesian Linear Regression

    Ryouichi NISHIMURA  Seigo ENOMOTO  Hiroaki KATO  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    53-63

    Surveillance with multiple cameras and microphones is promising to trace activities of suspicious persons for security purposes. When these sensors are connected to the Internet, they might also jeopardize innocent people's privacy because, as a result of human error, signals from sensors might allow eavesdropping by malicious persons. This paper presents a proposal for exploiting super-resolution to address this problem. Super-resolution is a signal processing technique by which a high-resolution version of a signal can be reproduced from a low-resolution version of the same signal source. Because of this property, an intelligible speech signal is reconstructed from multiple sensor signals, each of which is completely unintelligible because of its sufficiently low sampling rate. A method based on Bayesian linear regression is proposed in comparison with one based on maximum likelihood. Computer simulations using a simple sinusoidal input demonstrate that the methods restore the original signal from those which are actually measured. Moreover, results show that the method based on Bayesian linear regression is more robust than maximum likelihood under various microphone configurations in noisy environments and that this advantage is remarkable when the number of microphones enrolled in the process is as small as the minimum required. Finally, listening tests using speech signals confirmed that mean opinion score (MOS) of the reconstructed signal reach 3, while those of the original signal captured at each single microphone are almost 1.

  • Efficient Sphere Decoding Based on a Regular Detection Tree for Generalized Spatial Modulation MIMO Systems

    Hye-Yeon YOON  Gwang-Ho LEE  Tae-Hwan KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/10
      Vol:
    E101-B No:1
      Page(s):
    223-231

    The generalized spatial modulation (GSM) is a new transmission technique that can realize high-performance multiple-input multiple-output (MIMO) communication systems with a low RF complexity. This paper presents an efficient sphere decoding method used to perform the symbol detection for the generalized spatial modulation (GSM) multiple-input multiple-output (MIMO) systems. In the proposed method, the cost metric is modified so that it does not include the cancellation of the nonexistent interference. The modified cost metric can be computed by formulating a detection tree that has a regular structure representing the transmit antenna combinations as well as the symbol vectors, both of which are detected efficiently by finding the shortest path on the basis of an efficient tree search algorithm. As the tree search algorithm is performed for the regular detection tree to compute the modified but mathematically-equivalent cost metric, the efficiency of the sphere decoding is improved while the bit-error rate performance is not degraded. The simulation results show that the proposed method reduces the complexity significantly when compared with the previous method: for the 6×6 64QAM GSM-MIMO system with two active antennas, the average reduction rate of the complexity is as high as 45.8% in the count of the numerical operations.

  • Iterative Frequency Offset Estimation Based on ML Criterion for OFDM Systems

    Masahiro FUJII  Masaya ITO  

     
    LETTER-Communication Theory and Systems

      Vol:
    E100-A No:12
      Page(s):
    2732-2737

    In this letter, we analyze performances of a frequency offset estimation based on the maximum likelihood criterion and provide a theoretical proof that the mean squared error of the estimation grows with increase in the offset. Moreover, we propose a new iterative offset estimation method based on the analysis. By computer simulations, we show that the proposed estimator can achieve the lowest estimation error after a few iterations.

  • HMM-Based Maximum Likelihood Frame Alignment for Voice Conversion from a Nonparallel Corpus

    Ki-Seung LEE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    3064-3067

    One of the problems associated with voice conversion from a nonparallel corpus is how to find the best match or alignment between the source and the target vector sequences without linguistic information. In a previous study, alignment was achieved by minimizing the distance between the source vector and the transformed vector. This method, however, yielded a sequence of feature vectors that were not well matched with the underlying speaker model. In this letter, the vectors were selected from the candidates by maximizing the overall likelihood of the selected vectors with respect to the target model in the HMM context. Both objective and subjective evaluations were carried out using the CMU ARCTIC database to verify the effectiveness of the proposed method.

  • Investigation on Non-Orthogonal Multiple Access with Reduced Complexity Maximum Likelihood Receiver and Dynamic Resource Allocation

    Yousuke SANO  Kazuaki TAKEDA  Satoshi NAGATA  Takehiro NAKAMURA  Xiaohang CHEN  Anxin LI  Xu ZHANG  Jiang HUILING  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1301-1311

    Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.

  • Performance Comparison of Overloaded MIMO System with and without Antenna Selection

    Yasunori NIN  Hikari MATSUOKA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    762-770

    This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system with and without antenna selection. In the overloaded MIMO-OFDM system, even if only a small amount of feedback is available, performance can be improved by selecting the transmit antennas. Thus, this paper compares the performance of an overloaded MIMO system with and without antenna selection under different code rates. It is shown that the performance of the MIMO-OFDM system for six signal streams with QPSK modulation is about 2.0dB better than that for three signal streams with 16QAM modulation while it is about 5.0dB better than that of the MIMO-OFDM system for two signal streams with 64QAM modulation at a bit error rate (BER) of 10-3. However, it is also shown that the performance of the overloaded MIMO system is worse if the code rate of the repetition code increases.

  • An Effective and Simple Solution for Stationary Target Localization Using Doppler Frequency Shift Measurements

    Li Juan DENG  Ping WEI  Yan Shen DU  Wan Chun LI  Ying Xiang LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1070-1073

    Target determination based on Doppler frequency shift (DFS) measurements is a nontrivial problem because of the nonlinear relation between the position space and the measurements. The conventional methods such as numerical iterative algorithm and grid searching are used to obtain the solution, while the former requires an initial position estimate and the latter needs huge amount of calculations. In this letter, to avoid the problems appearing in those conventional methods, an effective solution is proposed, in which two best linear unbiased estimators (BULEs) are employed to obtain an explicit solution of the proximate target position. Subsequently, this obtained explicit solution is used to initialize the problem of original maximum likelihood estimation (MLE), which can provide a more accurate estimate.

  • Reduced Complexity K-Best Decoder via Adaptive Symbol Constellation for Uncoded MIMO Wireless Systems

    Juan Francisco CASTILLO-LEON  Marco CARDENAS-JUAREZ  Victor M. GARCIA-MOLLA  Enrique STEVENS-NAVARRO  Ulises PINEDA-RICO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/08/22
      Vol:
    E100-B No:2
      Page(s):
    336-343

    In this paper, we present a low and variable computation complexity decoder based on K-Best for uncoded detection in spatially multiplexed MIMO systems. In the variable complexity K-Best (VKB), the detection of each symbol is carried out using only a symbol constellation of variable size. This symbol constellation is obtained by considering the channel properties and a given target SNR. Simulations show that the proposed technique almost matches the performance of the original K-Best decoder. Moreover, it is able to reduce the average computation complexity by at least 75% in terms of the number of visited nodes.

  • Joint Maximum Likelihood Detection in Far User of Non-Orthogonal Multiple Access

    Kenji ANDO  Yukitoshi SANADA  Takahiko SABA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/07/29
      Vol:
    E100-B No:1
      Page(s):
    177-186

    Non-orthogonal multiple access (NOMA) enables multiple mobile devices to share the same frequency band. In a conventional NOMA scheme, the receiver of a far user detects its desired signal without canceling the signal for a near user. However, the signal for the near user acts as interference and degrades the accuracy of likelihood values for the far user. In this paper, a joint maximum likelihood detection scheme for the far user of the NOMA downlink is proposed. The proposed scheme takes the interference signal into account in calculating the likelihood values. Numerical results obtained through computer simulation show that the proposed scheme improves the performance by from 0.2dB to 3.1dB for power allocation coefficients of 0.2 to 0.4 at a bit error rate (BER) of 10-2 relative to the conventional scheme.

  • Simplified Maximum Likelihood Detection with Unitary Precoding for XOR Physical Layer Network Coding

    Satoshi DENNO  Daisuke UMEHARA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/07/19
      Vol:
    E100-B No:1
      Page(s):
    167-176

    This paper proposes novel simplified maximum likelihood detection for XOR physical layer network coding (XOR-PNC) in bi-directional wireless relay systems with Quaternary phase shift keying (QPSK). The proposed detection applies unitary precoding to achieve superior performance without computationally prohibitive exhaustive search. The performance of the XOR employing the proposed simplified MLD with the precoding is analyzed in relay systems with orthogonal frequency division multiplexing (OFDM). The performance of the XOR-PNC with the proposed techniques is also evaluated by computer simulation. The XOR-PNC with the proposed techniques achieves about 7dB better performance than the amplify-and-forward physical layer network coding in the 5-path fading channel at BER=10-4. It is also shown that the XOR-PNC with the proposed techniques achieves better performance than that without precoding.

  • Off-Grid DOA Estimation Based on Analysis of the Convexity of Maximum Likelihood Function

    Liang LIU  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:12
      Page(s):
    2705-2708

    Spatial compressive sensing (SCS) has recently been applied to direction-of-arrival (DOA) estimation, owing to its advantages over conventional versions. However the performance of compressive sensing (CS)-based estimation methods degrades when the true DOAs are not exactly on the discretized sampling grid. We solve the off-grid DOA estimation problem using the deterministic maximum likelihood (DML) estimation method. In this letter, on the basis of the convexity of the DML function, we propose a computationally efficient algorithm framework for off-grid DOA estimation. Numerical experiments demonstrate the superior performance of the proposed methods in terms of accuracy, robustness and speed.

  • Software Reliability Assessment via Non-Parametric Maximum Likelihood Estimation

    Yasuhiro SAITO  Tadashi DOHI  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2042-2050

    In this paper we consider two non-parametric estimation methods for software reliability assessment without specifying the fault-detection time distribution, where the underlying stochastic process to describe software fault-counts in the system testing is given by a non-homogeneous Poisson process. The resulting data-driven methodologies can give the useful probabilistic information on the software reliability assessment under the incomplete knowledge on fault-detection time distribution. Throughout examples with real software fault data, it is shown that the proposed methods provide more accurate estimation results than the common parametric approach.

  • Software Reliability Modeling Based on Burr XII Distributions

    Takahiro IMANAKA  Tadashi DOHI  

     
    LETTER

      Vol:
    E98-A No:10
      Page(s):
    2091-2095

    In this letter we develop a software reliability modeling framework by introducing the Burr XII distributions to software fault-detection time. An extension to deal with software metrics data characterizing the product size, program complexity or testing expenditure is also proposed. Finally, we investigate the goodness-of-fit performance and compare our new models with the existing ones through real data analyses.

  • Analysis of the Convexity of Iterative Maximum Likelihood Methods for DOA Estimation

    Liang LIU  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:8
      Page(s):
    1829-1833

    In this letter, a new analysis technique for finding the convexity of iterative maximum likelihood (IML) methods for direction-of-arrival (DOA) estimation is presented. The proposed technique can pave the way in avoiding the local solution when the IML methods are utilized to estimate DOA, especially for the scenarios of array with large antennas. From the derivation, we can see that as long as the initial DOA belongs to the approximate convex range estimated by our proposed technique, the IML methods can estimate the DOA very well without entering into local minima, which is particularly true for the large arrays. Furthermore, numerical experiments show us the results tallied well with our theoretical derivations.

1-20hit(142hit)