The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] moment(168hit)

41-60hit(168hit)

  • Statistical Analysis of Huge-Scale Periodic Array Antenna Including Randomly Distributed Faulty Elements

    Keisuke KONNO  Qiang CHEN  Kunio SAWAYA  Toshihiro SEZAI  

     
    PAPER-Microwave and Millimeter-Wave Antennas

      Vol:
    E94-C No:10
      Page(s):
    1611-1617

    On the huge-scale array antenna for SSPS (space solar power systems), the problem of faulty elements and effect of mutual coupling between array elements should be considered in practice. In this paper, the effect of faulty elements as well as mutual coupling on the performance of the huge-scale array antenna are analyzed by using the proposed IEM/LAC. The result shows that effect of faulty elements and mutual coupling on the actual gain of the huge-scale array antenna are significant.

  • Acceleration of Flexible GMRES Using Fast Multipole Method for Implementation Based on Combined Tangential Formulation

    Hidetoshi CHIBA  Toru FUKASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:10
      Page(s):
    1661-1668

    In this study, we demonstrate an acceleration of flexible generalized minimal residual algorithm (FGMRES) implemented with the method of moments and the fast multipole method (FMM), based on a combined tangential formulation. For the implementation of the FGMRES incorporated with the FMM concept, we propose a new definition of the truncation number for the FMM operator within the inner solver. The proposed truncation number provides an optimal variable preconditioner by controlling the accuracy and computational cost of the inner iteration. Moreover, to further accelerate the convergence, we introduce the concept of a multistage preconditioner. Numerical experiments reveal that our new version of FGMRES, based on the proposed truncation number for the inner solver and the multistage preconditioner, achieves outstanding acceleration of the convergence for large-scale and practical electromagnetic scattering and radiation problems with several levels of geometrical complexity.

  • Image Watermarking Based on Invariant Representation of Polar Sine Transform

    Leida LI  Jianying ZHANG  Ajith ABRAHAM  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:10
      Page(s):
    2048-2052

    This letter presents a new image watermarking scheme using Polar Sine Transform (PST), a new kind of orthogonal moment defined on a circular domain. The PSTs are easy to compute and have no numerical stability problem, thus are more suitable for watermarking. In the proposed method, the PSTs are modified according to the binary watermark bits, producing a compensation image. The watermarked image is obtained by adding the compensation image to the original image directly. Simulation results show the advantages of the proposed scheme in terms of both watermark capacity and watermark robustness.

  • Reliability of Generalized Normal Laplacian Distribution Model in TH-BPSK UWB Systems

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E94-A No:8
      Page(s):
    1772-1775

    In this letter, the reliabilty of the generalized normal-Laplace (GNL) distribution used for modeling the multiple access interference (MAI) plus noise in time-hopping (TH) binary phase-shift keying (BPSK) ultra-wideband (UWB) systems is evaluated in terms of the probability density function and the BER. The multiple access performance of TH-BPSK UWB systems based on GNL model is analyzed. The average BER performance obtained by using GNL approximation well matches with the exact BER results of TH-BPSK UWB systems. The parameter estimates of GNL distribution based on the moments estimation method is also presented.

  • 3D Face Recognition Using Geodesic PZM Array from a Single Model per Person

    Farshid HAJATI  Abolghasem A. RAIE  Yongsheng GAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:7
      Page(s):
    1488-1496

    For the 3D face recognition numerous methods have been proposed, but little attention has been given to the local-based representation for the texture map of the 3D models. In this paper, we propose a novel 3D face recognition approach based on locally extracted Geodesic Pseudo Zernike Moment Array (GPZMA) of the texture map when only one exemplar per person is available. In the proposed method, the function of the PZM is controlled by the geodesic deformations to tackle the problem of face recognition under the expression and pose variations. The feasibility and effectiveness investigation for the proposed method is conducted through a wide range of experiments using publicly available BU-3DFE and Bosphorus databases including samples with different expression and pose variations. The performance of the proposed method is compared with the performance of three state-of-the-art benchmark approaches. The encouraging experimental results demonstrate that the proposed method achieves much higher accuracy than the benchmarks in single-model databases.

  • Full-Wave Design Considering Slot Admittance in 2-D Waveguide Slot Arrays with Perfect Input Matching

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    725-734

    A novel design technique for two-dimensional (2-D) waveguide slot arrays is proposed in this paper that combines a full-wave method of moments (MoM) analysis and an equivalent circuit with the explicit restraint of input matching. The admittance and slot spacing are determined first in an equivalent circuit to realize the desired distribution of power dissipation and phase, with the explicit restraint of input matching. Secondly by applying a full-wave MoM analysis to the finite 2-D array, slot parameters are iteratively determined to realize the active admittance designed above where slot mutual coupling and wall thickness are fully taken into account. The admittance, treated as the key parameter in the equivalent circuit corresponds to the power dissipation of the slots but not to the slot voltage, which is directly synthesized from the radiation pattern. The initial value of the power dissipation is assumed to be proportional to the square of the amplitude of the desired slot voltage. This assumption leads to a feedback procedure, because the resultant slot voltage distribution generally differs from the desired ones due to the effect of non-uniformity in the characteristic impedance on slot apertures. This slot voltage error is used to renew the initial distribution of power dissipation in the equivalent circuit. Generally, only one feedback cycle is needed. Two 2427-element arrays with uniform and Taylor distributions were designed and fabricated at 25.3 GHz. The measured overall reflections for both antennas were suppressed below -18 dB over the 24.3-26.3 GHz frequency range. High aperture efficiencies of 86.8% and 55.1% were realized for the antennas with uniform and Taylor distributions, the latter of which has very low sidelobes below -33 dB in both the E- and H-planes.

  • Dynamics Modeling and Induced Vibration Analysis of Momentum Wheel for Control Moment Gyros

    Jong-Oh PARK  Shi-Hwan OH  Ki-Lyuk YONG  Young-Do IM  

     
    LETTER-Noise and Vibration

      Vol:
    E94-A No:3
      Page(s):
    990-994

    Actuator-induced disturbances are among the most crucial factors in correct spacecraft attitude pointing and stability for fine attitude control problems. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model that predicts the effect of disturbances to CMGs by assuming static and dynamic imbalances. The proposed analytical model with respect to the disturbances of a CMG is derived using the Lagrange energy method based on the small-signal assumption.

  • Convergence Property of IDR(s) Method Implemented along with Method of Moments for Solving Large-Scale Electromagnetic Scattering Problems Involving Conducting Objects

    Hidetoshi CHIBA  Toru FUKASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:2
      Page(s):
    198-205

    In this paper, the performance of the induced dimension reduction (IDR) method implemented along with the method of moments (MoM) is described. The MoM is based on a combined field integral equation for solving large-scale electromagnetic scattering problems involving conducting objects. The IDR method is one of Krylov subspace methods. This method was initially developed by Peter Sonneveld in 1979; it was subsequently generalized to the IDR(s) method. The method has recently attracted considerable attention in the field of computational physics. However, the performance of the IDR(s) has hardly been studied or practiced for electromagnetic wave problems. In this study, the performance of the IDR(s) is investigated and clarified by comparing the convergence property and memory requirement of the IDR(s) with those of other representative Krylov solvers such as biconjugate gradient (BiCG) methods and generalized minimal residual algorithm (GMRES). Numerical experiments reveal that the characteristics of the IDR(s) against the parameter s strongly depend on the geometry of the problem; in a problem with a complex geometry, s should be set to an adequately small value in order to avoid the "spurious convergence" which is a problem that the IDR(s) inherently holds. As for the convergence behavior, we observe that the IDR(s) has a better convergence ability than GPBiCG and GMRES(m) in a variety of problems with different complexities. Furthermore, we also confirm the IDR(s)'s inherent advantage in terms of the memory requirements over GMRES(m).

  • Practical Slot Array Design by Method of Moments Using One Basis Function and Constant Correction Length

    Jae-Ho LEE  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    158-165

    Method of moments (MoM) is an efficient design and analysis method for waveguide slot arrays. A rectangular entire-domain basis function is one of the most popular approximations for the slot aperture fields. MoM with only one basis function does not provide sufficient accuracy and the use of higher order mode of basis functions is inevitable to guarantee accuracy. However, including the higher order modes in MoM results in a rapid increase in the computational time as well as the analysis complexity; this is a serious drawback especially in the slot parameter optimization. The authors propose the slot correction length that compensates for the omission of higher order mode of basis functions. This length is constant for a wide range of couplings and frequency bands for various types of slots. The validity and universality of the concept of slot correction length are demonstrated for various slots and slot parameters. Practical slot array design can be drastically simplified by the use of MoM with only one basis function together with the slot correction length. As an example, a linear waveguide array of reflection-cancelling slot pairs is successfully designed.

  • Fresnel Zone Criterion to Implement Locality in the Method of Moments and PO-MoM Hybrid Method for the Reduction of Unknowns

    Keita ITO  Tetsu SHIJO  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:1
      Page(s):
    72-79

    Locality of high frequency electromagnetic scattering phenomena is embodied and imported to the Method of Moments (MoM) to reduce computational load. The proposed method solves currents on small areas only around inner and edge stationary phase points (SPPs) on the scatterer surfaces. The range of MoM area is explicitly specified in terms of Fresnel zone number as a function of frequency, source and observer positions. Based upon this criterion, scatterer of arbitrary size and shape can be solved with almost frequency independent number of unknowns. In some special cases like focusing systems, locality disappears and the method reduces to the standard MoM. The hybrid method called PO-MoM is complementarily introduced to cope with these cases, where Fresnel zone number with analogous but different definition is used. The selective use of Local-MoM and PO-MoM provides frequency insensitive number of unknowns for general combination of source and observation points. Numerical examples of RCS calculation for two dimensional flat and curved surfaces are presented to demonstrate the accuracy and reduction of unknowns of this method. The Fresnel zone, introduced in the scattering analysis for the first time, is a useful indicator of the locality or the boundary for MoM areas.

  • Analysis of Transient Electromagnetic Scattering from Two-Dimensional Open-Ended Structures by Numerical Inversion of Laplace Transform

    Shinichiro OHNUKI  Yuya KITAOKA  

     
    BRIEF PAPER-Transients and Time-Domain Techiques

      Vol:
    E94-C No:1
      Page(s):
    68-71

    A novel computational method is proposed to investigate electromagnetic scattering problems. It is error controllable and reliable simulation in time domain can be performed. We apply the proposed method to analysis of transient scattering from open-ended structures and discuss scattering mechanisms.

  • Efficient Implementation of Inner-Outer Flexible GMRES for the Method of Moments Based on a Volume-Surface Integral Equation Open Access

    Hidetoshi CHIBA  Toru FUKASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  

     
    PAPER-Numerical Techniques

      Vol:
    E94-C No:1
      Page(s):
    24-31

    This paper presents flexible inner-outer Krylov subspace methods, which are implemented using the fast multipole method (FMM) for solving scattering problems with mixed dielectric and conducting object. The flexible Krylov subspace methods refer to a class of methods that accept variable preconditioning. To obtain the maximum efficiency of the inner-outer methods, it is desirable to compute the inner iterations with the least possible effort. Hence, generally, inaccurate matrix-vector multiplication (MVM) is performed in the inner solver within a short computation time. This is realized by using a particular feature of the multipole techniques. The accuracy and computational cost of the FMM can be controlled by appropriately selecting the truncation number, which indicates the number of multipoles used to express far-field interactions. On the basis of the abovementioned fact, we construct a less-accurate but much cheaper version of the FMM by intentionally setting the truncation number to a sufficiently low value, and then use it for the computation of inaccurate MVM in the inner solver. However, there exists no definite rule for determining the suitable level of accuracy for the FMM within the inner solver. The main focus of this study is to clarify the relationship between the overall efficiency of the flexible inner-outer Krylov solver and the accuracy of the FMM within the inner solver. Numerical experiments reveal that there exits an optimal accuracy level for the FMM within the inner solver, and that a moderately accurate FMM operator serves as the optimal preconditioner.

  • Quantitative Evaluation for Computational Cost of CG-FMM on Typical Wiregrid Models

    Keisuke KONNO  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2611-2618

    The conjugate gradient-fast multipole method (CG-FMM) is one of the powerful methods for analysis of large-scale electromagnetic problems. It is also known that CPU time and computer memory can be reduced by CG-FMM but such computational cost of CG-FMM depends on shape and electrical properties of an analysis model. In this paper, relation between the number of multipoles and number of segments in each group is derived from dimension of segment arrangement in four typical wiregrid models. Based on the relation and numerical results for these typical models, the CPU time per iteration and computer memory are quantitatively discussed. In addition, the number of iteration steps, which is related to condition number of impedance matrix and analysis model, is also considered from a physical point of view.

  • Design of Post-Wall Feed Waveguide for a Parallel Plate Slot Array by an Analysis Model with Corrected Solid-Walls

    Koh HASHIMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:6
      Page(s):
    1566-1573

    A novel analysis model for post-wall waveguide T-junctions is proposed. Equivalent solid-walls for the post-walls to have equal guided wavelength are corrected in the analysis model so that the wall thickness for the coupling windows is set to the difference in the width between the post-wall and the solid-wall waveguides. The accuracy of the proposed model is confirmed by comparing it to an HFSS analysis for the real structure of the post-wall waveguide T-junction including the post surfaces. 61.25 GHz model antennas are fabricated for experimental verification. The reflection of the antenna designed by the modified analysis model is suppressed to below -15 dB over a 5.6 GHz bandwidth, while that in the antenna designed by the conventional model is larger than -15 dB around the design frequency.

  • A New Method for Low SNR Estimation of Noisy Speech Signals Using Fourth-Order Moments

    Roghayeh DOOST  Abolghasem SAYADIAN  Hossein SHAMSI  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:6
      Page(s):
    1599-1607

    In this paper the SNR estimation is performed frame by frame, during the speech activity. For this purpose, the fourth-order moments of the real and imaginary parts of frequency components are extracted, for both the speech and noise, separately. For each noisy frame, the mentioned fourth-order moments are also estimated. Making use of the proposed formulas, the signal-to-noise ratio is estimated in each frequency index of the noisy frame. These formulas also predict the overall signal-to-noise ratio in each noisy frame. What makes our method outstanding compared to conventional approaches is that this method takes into consideration both the speech and noise identically. It estimates the negative SNR almost as well as the positive SNR.

  • Moment Invariants of the Weighted Image

    Ken-ichi SAKAUE  Youji IIGUNI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:3
      Page(s):
    666-670

    Moment invariants of a discrete image are not strictly invariant to image displacements due to quantization errors. This letter introduces a weighting function such that the pixel value is smoothly reduced to zero at the boundary of the image. Image moments of the weighted image are robust against quantization errors, and the moment invariants of the weighted image are more invariant than those of the unweighted image.

  • A Universal Equivalent Circuit Model for Ceramic Capacitors

    Koh YAMANAGA  Shuhei AMAKAWA  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    347-354

    A physics-based equivalent circuit model of the ceramic capacitor is proposed, which can reproduce frequency characteristics of its impedance including the often observed yet hitherto physically unexplained kinks appearing above the primary series resonance frequency. The model can also account for parasitic effects of external inductances. In order to efficiently analyze and gain engineering insight into ceramic capacitors with a large number of metallic laminae, a two-dimensional method of moments is developed that treats the laminar structure as a uniform, effective medium. It turns out that the primary resonance and the kinks can be well understood and modeled by a lossy transmission line stub with a drastic wavelength reduction. The capacitor model is completed by adding components describing the skin effect and external inductances. The modeled impedance stays within a 4% margin of error up to 5 GHz. The proposed model could greatly improve the accuracy of power distribution network simulation.

  • Theoretical Study on Wave Propagation and Scattering in Random Media and Its Application Open Access

    Mitsuo TATEIBA  

     
    INVITED PAPER

      Vol:
    E93-C No:1
      Page(s):
    3-8

    The theoretical studies conducted mainly by the author are reviewed on (1) derivation of arbitrary order moment equations and solutions of some equations, (2) scattering by many particles and the effective medium constant of random medium, (3) scattering by a conducting body in random media and (4) spatially partially-coherent wave scattering, with application to satellite communications, artificial material development, and sensing and radar technology. The leading research results are described with many references; and also unsolved subjects in the above four studies are touched.

  • Analysis of Huge-Scale Periodic Array Antenna Using Impedance Extension Method

    Keisuke KONNO  Qiang CHEN  Kunio SAWAYA  Toshihiro SEZAI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3869-3874

    An extreamly large scale periodic array antenna is required for transmitting power from space solar power systems. Analysis of the huge-scale array antenna is important to estimate the radiation property of the array antenna, but a full-wave analysis requires too much computer memory and excessive CPU time. In order to overcome these difficulties, the impedance extension method is proposed as a method of approximate analysis for huge periodic array antennas. From the results of actual gain pattern obtained by the proposed method and its relative error, it is shown that edge effects of a huge-scale array antenna can be ignored in calculating the radiation property.

  • Moments Added Statistical Shape Model for Boundary Extraction

    Haechul CHOI  Ho Chul SHIN  Si-Woong LEE  Yun-Ho KO  

     
    LETTER-Pattern Recognition

      Vol:
    E92-D No:12
      Page(s):
    2524-2526

    In this paper, we propose a method for extracting an object boundary from a low-quality image such as an infrared one. To take full advantage of a training set, the overall shape is modeled by incorporating statistical characteristics of moments into the point distribution model (PDM). Furthermore, a differential equation for the moment of overall shape is derived for shape refinement, which leads to accurate and rapid deformation of a boundary template toward real object boundary. The simulation results show that the proposed method has better performance than conventional boundary extraction methods.

41-60hit(168hit)