The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] moment(168hit)

21-40hit(168hit)

  • Improved Primary-Characteristic Basis Function Method Considering Higher-Order Multiple Scattering

    Tai TANAKA  Yoshio INASAWA  Yasuhiro NISHIOKA  Hiroaki MIYASHITA  

     
    PAPER

      Vol:
    E100-C No:1
      Page(s):
    45-51

    We propose a novel improved characteristic basis function method (IP-CBFM) for accurately analysing the radar cross section (RCS). This new IP-CBFM incorporates the effect of higher-order multiple scattering and has major influences in analyzing monostatic RCS (MRCS) of single incidence and bistatic RCS (BRCS) problems. We calculated the RCS of two scatterers and could confirm that the proposed IP-CBFM provided higher accuracy than the conventional method while significantly reducing the number of CBF.

  • Spectral Features Based on Local Normalized Center Moments for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Xinran ZHANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:10
      Page(s):
    1863-1866

    To discuss whether rotational invariance is the main role in spectrogram features, new spectral features based on local normalized center moments, denoted by LNCMSF, are proposed. The proposed LNCMSF firstly adopts 2nd order normalized center moments to describe local energy distribution of the logarithmic energy spectrum, then normalized center moment spectrograms NC1 and NC2 are gained. Secondly, DCT (Discrete Cosine Transform) is used to eliminate the correlation of NC1 and NC2, then high order cepstral coefficients TNC1 and TNC2 are obtained. Finally, LNCMSF is generated by combining NC1, NC2, TNC1 and TNC2. The rotational invariance test experiment shows that the rotational invariance is not a necessary property in partial spectrogram features. The recognition experiment shows that the maximum UA (Unweighted Average of Class-Wise Recall Rate) of LNCMSF are improved by at least 10.7% and 1.2% respectively, compared to that of MFCC (Mel Frequency Cepstrum Coefficient) and HuWSF (Weighted Spectral Features Based on Local Hu Moments).

  • Spectral Features Based on Local Hu Moments of Gabor Spectrograms for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Cheng ZHA  Xinran ZHANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/05/06
      Vol:
    E99-D No:8
      Page(s):
    2186-2189

    To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.

  • Trellis Coded Orbital Angular Momentum Modulation

    Chao ZHANG  Lu MA  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1618-1621

    Trellis coded modulation (TCM) concept is applied to the mode constellation points of orbital angular momentum (OAM) modulation. OAM modulation considers the multiple OAM modes as additional constellation points and maps a first part of a block of information bits to the transmitting OAM modes. Therefore, spatial multiplexing gains are retained and spectral efficiency is boosted. The second part of the block of information bits is mapped to a complex symbol using conventional digital modulation schemes. At any particular time instant, only one OAM mode is active. The receiver estimates the transmitted symbol and the active OAM mode, then uses the two estimates to retrieve the original block of data bits. Simulation reveals that with the TCM employed both for the OAM constellation points and the signal constellation points, a considerable bit error rate (BER) gain can be obtained under all turbulence conditions, compared with that of the no coding scheme.

  • Time-Domain Solver for 3D Electromagnetic Problems Using the Method of Moments and the Fast Inverse Laplace Transform

    Shinichiro OHNUKI  Yuya KITAOKA  Takashi TAKEUCHI  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    797-800

    A novel computational method based on a combination of the method of moments in the complex frequency domain and the fast inverse Laplace transform is proposed for solving time-domain electromagnetic problems. Using our proposed method, it is easy to estimate and control the computational error, and the observation time can be selected independently. We investigate canonical scattering problems and verify these advantages.

  • Improved Primary Characteristic Basis Function Method for Monostatic Radar Cross Section Analysis of Specific Coordinate Plane

    Tai TANAKA  Yoshio INASAWA  Yasuhiro NISHIOKA  Hiroaki MIYASHITA  

     
    PAPER

      Vol:
    E99-C No:1
      Page(s):
    28-35

    The characteristic basis function method using improved primary characteristic basis functions (IP-CBFM) has been proposed as a technique for high-precision analysis of monostatic radar cross section (RCS) of a scattering field in a specific coordinate plane. IP-CBFM is a method which reduces the number of CBF necessary to express a current distribution by combining secondary CBF calculated for each block of the scatterer with the primary CBF to form a single improved primary CBF (IP-CBF). When the proposed technique was evaluated by calculating the monostatic RCS of a perfect electric conductor plate and cylinder, it was found that solutions corresponding well with analysis results from conventional CBFM can be obtained from small-scale matrix equations.

  • Training Assist System of a Lower Limb Prosthetic Visualizing Floor-Reaction Forces Using a Color-Depth Sensing Camera

    Kunihiro OGATA  Tomoki MITA  Takeshi SHIMIZU  Nobuya YAMASAKI  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2015/07/28
      Vol:
    E98-D No:11
      Page(s):
    1916-1922

    Some unilateral lower-limb amputees, have through continued exertion, increase the foot reaction force of the sound leg. The asymmetric gait with a prosthetic leg may thus negatively affect the musculoskeletal health of the leg on the healthy side. Therefore, it is important for these amputees to learn how to adjust the balance of each foot load in training. The aim of this study is to develop a training support system visualizing floor-reaction forces using a color-depth sensor. The pose of the entire body of the amputee is measured by the depth sensor, and the floor reaction force is estimated based on Zero Moment Point (ZMP), which is calculated using the center of mass of the amputee. Evaluation experiments of the proposed method were performed and they confirmed the effectiveness of the estimation method and the training with the visualization of reaction force.

  • Quantification and Verification of Whole-Body-Average SARs in Small Animals Exposed to Electromagnetic Fields inside Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2184-2191

    This paper aims to achieve a high-quality exposure level quantification of whole-body average-specific absorption rates (WBA-SARs) for small animals in a medium-size reverberation chamber (RC). A two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC-type exposure system, has been used as an evaluation method to determine the whole-body exposure level in small animals. However, there is little data that quantitatively demonstrate the validity and accuracy of this method in an RC up to now. In order to clarify the validity of the two-step method, we compare the physical quantities in terms of electric field strength and WBA-SARs by using a direct numerical assessment method known as the method of moments (MoM) with ten homogenous gel phantoms placed in an RC with 2GHz exposure. The comparison results show that the relative errors between the two-step method and the MoM approach are approximately below 10%, which reveals the validity and usefulness of the two-step technique. Finally, we perform a dosimetric analysis of the WBA-SARs for anatomical mouse models with the two-step method and determine the input power related to our developed RC-exposure system to achieve a target exposure level in small animals.

  • Numerical Simulation of Far-Field Gain Determination at Reduced Distances Using Phase Center Open Access

    Katsushige HARIMA  

     
    INVITED PAPER

      Vol:
    E97-B No:10
      Page(s):
    2001-2010

    This paper describes numerical analyses of the distance-dependent gain variation that exists in gain measurements based on the Friis transmission formula for typical broadband antennas, including double-ridged guide horn and log-periodic dipole array antennas. The analyses are performed by simulating gain measurements using the method of moments with higher-order basis functions and the finite integration method. In addition, we propose approximate techniques to determine the antenna phase center by exploiting the distance dependence of the gain. Simulation and experimental results show the effectiveness of using the location of the phase center to accurately determine the far-field gain at reduced antenna separation distances.

  • The Numerical Analysis of an Antenna near a Dielectric Object Using the Higher-Order Characteristic Basis Function Method Combined with a Volume Integral Equation

    Keisuke KONNO  Qiang CHEN  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2066-2073

    The higher-order characteristic basis function method (HO-CBFM) is clearly formulated. HO-CBFM provides results accurately even if a block division is arbitrary. The HO-CBFM combined with a volume integral equation (VIE) is used in the analysis of various antennas in the vicinity of a dielectric object. The results of the numerical analysis show that the HO-CBFM can reduce the CPU time while still achieving the desired accuracy.

  • Boundary Integral Equation Analysis of Spoof Localized Surface Plasmons Excited in a Perfectly Conducting Cylinder with Longitudinal Corrugations

    Kazuhiro FUJITA  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    710-713

    The main purpose of this paper is to apply the boundary integral equation (BIE) method to the analysis of spoof localized surface plasmons (spoof LSPs) excited in a perfectly conducting cylinder with longitudinal corrugations. Frequency domain BIE schemes based on electric field integral equation (EFIE), magnetic field integral equation (MFIE) and combined field integral equation (CFIE) formulations are used to solve two-dimensional electromagnetic (EM) problems of scattering from the cylinder illuminated by a transverse electric plane wave. In this approach effects of spoof LSPs are included in the secondary surface current and charge densities resulting from the interaction between the plane wave and the cylinder. Numerical results obtained with the BIE schemes are validated by comparison with that of a recently proposed modal solution based on the metamaterial approximation.

  • Parallel Computation of Complex Antennas around the Coated Object Using Iterative Vector Fields Technique

    Ying YAN  Xunwang ZHAO  Yu ZHANG  Changhong LIANG  Zhewang MA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    661-669

    In this paper, a novel hybrid technique for analyzing complex antennas around the coated object is proposed, which is termed as “iterative vector fields with Physical Optics (PO)”. A closed box is used to enclose the antennas and the complex field vectors on the box' surfaces can then be obtained using Huygens principle. The equivalent electromagnetic currents on Huygens surfaces are computed by Higher-order Method of Moments (HOB-MoM) and the fields scattered from the coated object are calculated by PO method. In addition, the parallel technique based on Message Passing Interface (MPI) and Scalable Linear Algebra Package (ScaLAPACK) is employed so as to accelerate the computation. Numerical examples are presented to validate and to show the effectiveness of the proposed method on solving the practical engineering problem.

  • Image Quality Assessment Based on Low Order Moment Features

    Leida LI  Hancheng ZHU  Gaobo YANG  

     
    LETTER

      Vol:
    E97-A No:2
      Page(s):
    538-542

    This letter presents a new image quality metric using low order discrete orthogonal moments. The moment features are extracted in a block manner and the relative moment differences (RMD) are computed. A new exponential function based on RMD is proposed to generate the quality score. The performance of the proposed method is evaluated on public databases. Experimental results and comparisons demonstrate the efficiency of the proposed method.

  • Voice Activity Detection Based on Generalized Normal-Laplace Distribution Incorporating Conditional MAP

    Ji-Hyun SONG  Sangmin LEE  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:12
      Page(s):
    2888-2891

    In this paper, we propose a novel voice activity detection (VAD) algorithm based on the generalized normal-Laplace (GNL) distribution to provide enhanced performance in adverse noise environments. Specifically, the probability density function (PDF) of a noisy speech signal is represented by the GNL distribution; the variance of the speech and noise of the GNL distribution are estimated using higher-order moments. After in-depth analysis of estimated variances, a feature that is useful for discrimination between speech and noise at low SNRs is derived and compared to a threshold to detect speech activity. To consider the inter-frame correlation of speech activity, the result from the previous frame is employed in the decision rule of the proposed VAD algorithm. The performance of our proposed VAD algorithm is evaluated in terms of receiver operating characteristics (ROC) and detection accuracy. Results show that the proposed method yields better results than conventional VAD algorithms.

  • An Equivalent Double Layer Model for a Fast Design and Analysis of High Gain-Multilayer Radial Line Slot Antennas

    Tung NGUYEN  Rushanthi JAYAWARDENE  Yasutomo TAKANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Osamu AMANO  Shuichi KOREEDA  Takaomi MATSUZAKI  Yukio KAMATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:11
      Page(s):
    2891-2900

    Light weight RLSAs with a honeycomb-type parallel plate are promising candidates for satellite antennas. However, the design of slot lengths and positions in honeycomb RLSAs consisting of a core, skin and adhesive layers involves time-consuming EM analysis. In this paper, an equivalent double layer model is devised for fast slot coupling analysis by the Method of moments (MoM) together with a simplified array design procedure. A fabricated antenna with a diameter of 900mm demonstrates the high directivity of 48.3dBi and a gain of 44.6dBi at 32GHz, with the reflection below -15dB. This antenna weighs only 1.16kg.

  • Electromagnetic Modeling of Metamaterials Open Access

    Toru UNO  

     
    INVITED PAPER

      Vol:
    E96-B No:10
      Page(s):
    2340-2347

    Metamaterials are generally defined as a class of artificial effective media which macroscopically exhibit extraordinary electromagnetic properties that may not be found in nature, and are composed of periodically structured dielectric, or magnetic, or metallic materials. This paper reviews recently developed electromagnetic modeling methods of metamatericals and their inherent basic ideas, with a focus on full wave numerical techniques. Methods described in this paper are the Method of Moments (MoM) and the Finite Difference Time Domain (FDTD) Method for scattering problems excited by an incident plane wave and a single nonperiodic source, and the Finite Element Method (FEM), the Finite Difference Frequency Domain (FDFD) method and the FDTD method for band diagram calculations.

  • Localization of Radiation Integrals Using the Fresnel Zone Numbers

    Takayuki KOHAMA  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:5
      Page(s):
    928-935

    Radiation integral areas are localized and reduced based upon the locality of scattering phenomena. In the high frequency, the scattering field is given by the currents, not the entire region, but on the local areas near the scattering centers, such as the stationary phase points and edge diffraction points, due to the cancelling effect of integrand in the radiation integral. The numerical calculation which this locality is implemented into has been proposed for 2-dimensional problems. The scattering field can be approximated by integrating the currents weighted by the adequate function in the local areas whose size and position are determined appropriately. Fresnel zone was previously introduced as the good criterion to determine the local areas, but the determination method was slightly different, depending on the type of scattering centers. The objective of this paper is to advance the Fresnel zone criteria in a 2-dimensional case to the next stage with enhanced generality and applicability. The Fresnel zone number is applied not directly to the actual surface but to the virtual one associated with the modified surface-normal vector satisfying the reflection law. At the same time, the argument in the weighting function is newly defined by the Fresnel zone number instead of the actual distance from the scattering centers. These two revisions bring about the following three advantages; the uniform treatment of various types scattering centers, the smallest area in the localization and applicability to 3-dimensional problems.

  • A Comparative Study of Rotation Angle Estimation Methods Based on Complex Moments

    Jong-Min LEE  Whoi-Yul KIM  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:5
      Page(s):
    1485-1493

    Determining the rotation angle between two images is essential when comparing images that may include rotational variation. While there are three representative methods that utilize the phases of Zernike moments (ZMs) to estimate rotation angles, very little work has been done to compare the performances of these methods. In this paper, we compare the performances of these three methods and propose a new, angular radial transform (ART)-based method. Our method extends Revaud et al.'s method [1] and uses the phase of angular radial transform coefficients instead of ZMs. We show that our proposed method outperforms the ZM-based method using the MPEG-7 shape dataset when computation times are compared or in terms of the root mean square error vs. coverage.

  • Analysis on Soft-Decision-and-Forward Cooperative Networks with Multiple Relays

    Kyoung-Young SONG  Jaehong KIM  Jong-Seon NO  Habong CHUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    509-518

    In this paper, we analyze the best relay selection scheme for the soft-decision-and-forward (SDF) cooperative networks with multiple relays. The term `best relay selection' implies that the relay having the largest end-to-end signal-to-noise ratio is selected to transmit in the second phase transmission. The approximate performances in terms of pairwise error probability (PEP) and bit error rate (BER) are analyzed and compared with the conventional multiple-relay transmission scheme where all the relays participate in the second phase transmission. Using the asymptotics of the Fox's H-function, the diversity orders of the best relay selection and conventional relay scheme for the SDF cooperative networks are derived. It is shown that both have the same full diversity order. The numerical results show that the best relay selection scheme outperforms the conventional one in terms of bit error rate.

  • On Statistics of Log-Ratio of Arithmetic Mean to Geometric Mean for Nakagami-m Fading Power

    Ning WANG  Julian CHENG  Chintha TELLAMBURA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    647-650

    To assess the performance of maximum-likelihood (ML) based Nakagami m parameter estimators, current methods rely on Monte Carlo simulation. In order to enable the analytical performance evaluation of ML-based m parameter estimators, we study the statistical properties of a parameter Δ, which is defined as the log-ratio of the arithmetic mean to the geometric mean for Nakagami-m fading power. Closed-form expressions are derived for the probability density function (PDF) of Δ. It is found that for large sample size, the PDF of Δ can be well approximated by a two-parameter Gamma PDF.

21-40hit(168hit)