The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] moment(168hit)

61-80hit(168hit)

  • Analysis and Design of a Reflection-Cancelling Transverse Slot-Pair Array with Grating-Lobe Suppressing Baffles

    Takehito SUZUKI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:10
      Page(s):
    3236-3242

    This paper presents the analysis and design of a reflection-cancelling transverse slot-pair array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. For the transverse slot array, the slot spacings with more than one free-space wavelength cause the grating-lobes. The baffles suppress the grating-lobes effectively. A one-dimensional slot array is extracted from the 2D array with in-phase excitation by assuming periodicity in the transversal direction. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot-pairs, which greatly accelerate the iterations process. Experiments at 25.3 GHz demonstrate the suppression of the grating lobes to the level less than -20.0 dB and also the good uniformity of the aperture field distribution.

  • Constraints of Second-Order Vanishing Moments on Lattice Structures for Non-separable Orthogonal Symmetric Wavelets

    Atsuyuki ADACHI  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    788-797

    In this paper, a design method of two-dimensional (2-D) orthogonal symmetric wavelets is proposed by using a lattice structure for multi-dimensional (M-D) linear-phase paraunitary filter banks (LPPUFB), which the authors have proposed as a previous work and then modified by Lu Gan et al. The derivation process for the constraints on the second-order vanishing moments is shown and some design examples obtained through optimization with the constraints are exemplified. In order to verify the significance of the constraints, some experimental results are shown for Lena and Barbara image.

  • Real-Time Spectral Moments Estimation and Ground Clutter Suppression for Precipitation Radar with High Resolution

    Eiichi YOSHIKAWA  Tomoaki MEGA  Takeshi MORIMOTO  Tomoo USHIO  Zen KAWASAKI  

     
    PAPER-Sensing

      Vol:
    E92-B No:2
      Page(s):
    578-584

    The purpose of this study is the real-time estimation of Doppler spectral moments for precipitation in the presence of ground clutter overlap. The proposed method is a frequency domain approach that uses a Gaussian model both to remove clutter spectrum and to estimate weather spectrum. The main advantage of this method is that it does not use processes like several fitting procedures and enables to estimate profiles of precipitation in a short processing time. Therefore this method is efficient for real-time radar observation with high range and time resolution. The performance of this method is evaluated based on simulation data and the observation data acquired by the Ku-band broad band radar (BBR) [1].

  • Analysis and Uniform Design of a Single-Layer Slotted Waveguide Array Antenna with Baffles

    Takehito SUZUKI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E92-B No:1
      Page(s):
    150-158

    This paper presents the formulation for the evaluation of external coupling in the alternating-phase feed single-layer slotted waveguide array antenna with baffles by using the Spectrum of Two-Dimensional Solutions (S2DS) method. A one-dimensional slot array is extracted from the array by assuming the periodicity in transversal direction and introducing the perfect electric conductors in the external region. The uniform excitation over the finite array is synthesized iteratively to demonstrate the fast and accurate results by S2DS. A unit design model with the baffles is introduced to determine the initial parameters of the slot pair which accelerate the iteration. Experiment at 25.3 GHz demonstrates good uniformity of the aperture field distribution as well as the effects of the baffles. The directivity is 32.7 dB which corresponds to the aperture efficiency 90.5% and the reflection is below -15.0 dB over 1.3 GHz.

  • A New Steering Law with Designated Direction Escape (DDE) for Control Moment Gyros

    Seung-Mok LEE  Seung-Wu RHEE  

     
    LETTER-Systems and Control

      Vol:
    E92-A No:1
      Page(s):
    315-317

    In this letter we provide a steering law for redundant single-gimbal control moment gyros. The proposed steering law is an extended version of the singular direction avoidance (SDA) steering law based on the singular value decomposition (SVD). All internal singularities are escapable for any non-zero constant torque command using the proposed steering law.

  • Evaluation of Trihedral Corner Reflector for SAR Polarimetric Calibration

    Shunichi KUSANO  Motoyuki SATO  

     
    LETTER

      Vol:
    E92-C No:1
      Page(s):
    112-115

    A trihedral corner reflector is often used for SAR polarimetric calibration. However, the scattering property of the reflector used for the calibration may not be correct if the high frequency approximation is not satisfied or if an incident angle deviates from the symmetric axis of the reflector. In order to know the conditions for precise SAR polarimetric calibration, we evaluated the polarimetric response of the reflector by a numerical simulation using the method of moment (MoM). It is found that allowable incident angle deviation is 5 degree to azimuth direction and 4 degree to elevation direction for precise SAR polarimetric calibration when the size of the reflector is 7.5 times larger than the wavelength of an incident wave.

  • Accurate Bit-Error Rate Evaluation for TH-PPM Systems in Nakagami Fading Channels Using Moment Generating Functions

    Bin LIANG  Erry GUNAWAN  Choi Look LAW  Kah Chan TEH  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    922-926

    Analytical expressions based on the Gauss-Chebyshev quadrature (GCQ) rule technique are derived to evaluate the bit-error rate (BER) for the time-hopping pulse position modulation (TH-PPM) ultra-wide band (UWB) systems under a Nakagami-m fading channel. The analyses are validated by the simulation results and adopted to assess the accuracy of the commonly used Gaussian approximation (GA) method. The influence of the fading severity on the BER performance of TH-PPM UWB system is investigated.

  • Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    Tran HUY DAT  Kazuya TAKEDA  Fumitada ITAKURA  

     
    PAPER-Speech Enhancement

      Vol:
    E91-D No:3
      Page(s):
    439-447

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  • Electric Field Simulations around a Car of the Tire Pressure Monitoring System

    Kouichi TANOSHITA  Koji NAKATANI  Yoshihide YAMADA  

     
    PAPER-Electromagnetics

      Vol:
    E90-B No:9
      Page(s):
    2416-2422

    In order to support driving safety, TPMS (Tire Pressure Monitoring System) has been introduced in U.S.A. and Europe. In Japan, the AIRwatch system has been developed and commercialized. Some studies were made to clarify the electric field environment of this system. However, no detailed calculation of the electric field between the transmitter in the tire and the receiving antenna has been published. This paper clarifies the electric field environment of the Japanese system through electromagnetic simulations by a high performance MoM simulator that utilizes the MLFMM scheme. First of all, electric wave emissions from an antenna mounted in a tire are shown to be larger than that of the same antenna in free space. The tire rubber effects are also investigated. Next, electric field distributions on the windshield holding the receiving antenna are calculated. By comparing calculated electric field levels with those in the free space condition, car body interruptions are clarified. Because car body interruptions are not so severe, it is shown that the free space electric field levels can be used as rough design parameters. Moreover, electric field changes due to tire rotation are also clarified. Calculation accuracy is confirmed by the good agreement with measured data collected from a 1/5 scale car model. To permit estimations to be made in actual situations, the effects of the ground are also investigated. This simulation study introduces a lot of important data useful in TPMS system design.

  • Comparisons of Simulated and Measured Electric Field Distributions in a Cabin of a Simplified Scale Car Model

    Satoru HORIUCHI  Kunihiko YAMADA  Shingo TANAKA  Yoshihide YAMADA  Naobumi MICHISHITA  

     
    PAPER-Measurements

      Vol:
    E90-B No:9
      Page(s):
    2408-2415

    The electric fields inside and outside a car must be carefully determined when designing a wireless communication system to be employed in the car. This paper introduces an effective simulation method and a precise measurement method of electric field distributions in a cabin of a simplified scale car model. A 1/3 car model is employed for ease of measurement. The scaled frequency of 2859 MHz, 3 times 953 MHz, is employed. The use of a moment method simulator utilizing the multilevel fast multipole method allows calculations to be performed on a personal computer. In order to judge the accuracy of simulation results, convergence of simulation output in accordance with segment size (triangle edge length) changes is ensured. Simulation loads in the case of metallic body only and a metallic body with window glass are also shown. In the measurements, an optical electric field probe is employed so as to minimize the disturbances that would otherwise be caused by metallic feed cable; precise measurement results are obtained. Comparisons of measured and simulated results demonstrate very good agreement which confirms the accuracy of the calculated results. 3-dimensional electric field distributions in the car model are shown and 3-dimensional standing wave shapes are clarified. Moreover, calculated and measured radiation patterns of the car model are shown so the total electric field distributions around a car are clarified.

  • Asymptotic Performance and Exact Symbol Error Probability Analysis of Orthogonal STBC in Spatially Correlated Rayleigh MIMO Channel

    Kyung Seung AHN  Heung Ki BAIK  

     
    PAPER-Communication Theory and Signals

      Vol:
    E90-A No:9
      Page(s):
    1965-1975

    Space-time block coding is an attractive solution for improving quality in wireless links. In general, the multiple-input multiple-output (MIMO) channel is correlated by an amount that depends on the propagation environment as well as the polarization of the antenna elements and the spacing between them. In this paper, asymptotic performance and exact symbol error probability (SEP) of orthogonal space-time block code (STBC) are considered in spatially correlated Rayleigh fading MIMO channel. We derive the moment generating function (MGF) of effective signal-to-noise ration (SNR) after combining scheme at the receiver. Using the MGF of effective SNR, we calculate the probability density function (pdf) of the effective SNR and derive exact closed-form SEP expressions of PAM/PSK/QAM with M-ary signaling. We prove that the diversity order is given by the product of the rank of the transmit and receive correlation matrix. Moreover, we quantify the loss in coding gain due to the spatial correlation. Simulation results demonstrate that our analysis provides accuracy.

  • Explicit Formula for Predictive FIR Filters and Differentiators Using Hahn Orthogonal Polynomials

    Saed SAMADI  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E90-A No:8
      Page(s):
    1511-1518

    An explicit expression for the impulse response coefficients of the predictive FIR digital filters is derived. The formula specifies a four-parameter family of smoothing FIR digital filters containing the Savitsky-Goaly filters, the Heinonen-Neuvo polynomial predictors, and the smoothing differentiators of arbitrary integer orders. The Hahn polynomials, which are orthogonal with respect to a discrete variable, are the main tool employed in the derivation of the formula. A recursive formula for the computation of the transfer function of the filters, which is the z-transform of a terminated sequence of polynomial ordinates, is also introduced. The formula can be used to design structures with low computational complexity for filters of any order.

  • Independent Component Analysis for Image Recovery Using SOM-Based Noise Detection

    Xiaowei ZHANG  Nuo ZHANG  Jianming LU  Takashi YAHAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:6
      Page(s):
    1125-1132

    In this paper, a novel independent component analysis (ICA) approach is proposed, which is robust against the interference of impulse noise. To implement ICA in a noisy environment is a difficult problem, in which traditional ICA may lead to poor results. We propose a method that consists of noise detection and image signal recovery. The proposed approach includes two procedures. In the first procedure, we introduce a self-organizing map (SOM) network to determine if the observed image pixels are corrupted by noise. We will mark each pixel to distinguish normal and corrupted ones. In the second procedure, we use one of two traditional ICA algorithms (fixed-point algorithm and Gaussian moments-based fixed-point algorithm) to separate the images. The fixed-point algorithm is proposed for general ICA model in which there is no noise interference. The Gaussian moments-based fixed-point algorithm is robust to noise interference. Therefore, according to the mark of image pixel, we choose the fixed-point or the Gaussian moments-based fixed-point algorithm to update the separation matrix. The proposed approach has the capacity not only to recover the mixed images, but also to reduce noise from observed images. The simulation results and analysis show that the proposed approach is suitable for practical unsupervised separation problem.

  • Preconditioners for CG-FMM-FFT Implementation in EM Analysis of Large-Scale Periodic Array Antennas

    Huiqing ZHAI  Qiaowei YUAN  Qiang CHEN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    707-710

    In this research, a sub-array preconditioner is applied to improve the convergence of conjugate gradient (CG) iterative solver in the fast multipole method and fast Fourier transform (FMM-FFT) implementation on a large-scale finite periodic array antenna with arbitrary geometry elements. The performance of the sub-array preconditioner is compared with the near-group preconditioner in the array antenna analysis. It is found that the near-group preconditioner achieves a little better convergence, while the sub-array preconditioner can be easily constructed and programmed with less CPU-time. The efficiency of the CG-FMM-FFT with high efficient preconditioner has been demonstrated in numerical analysis of a finite periodic array antenna.

  • Scattering of a Gaussian Beam by Dielectric Cylinders with Arbitrary Shape Using Multigrid-Moment Method

    Mitsuhiro YOKOTA  Kunihiro AOYAMA  

     
    PAPER-Numerical Techniques, Computational Electromagnetic

      Vol:
    E90-C No:2
      Page(s):
    258-264

    Scattering of a Gaussian beam by dielectric cylinders with arbitrary shape is analyzed by using the moment method combined with multigrid method. The effectiveness of the multigrid-moment method is firstly shown from the CPU time and residual norm viewpoints. The effect of the initial value for the multigrid cycle is also considered. After that, the scattered fields by two dielectric convex lens are calculated and the effect of the radius of curvature, width and the distance between each lens on the scattered field is examined.

  • Moment Method Analysis of a Plane Wave Generator in an Oversized Rectangular Waveguide

    Takafumi KAI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:1
      Page(s):
    105-113

    This paper presents moment method analysis of a plane wave generator in an oversized rectangular waveguide; its finite size is taken into account. Power divisions of the series of coupling windows and eigenmode excitation coefficients in the oversized waveguide are quantitatively evaluated by the analysis. In order to have a better understanding of array design, the relation between these mode coefficients and the radiation patterns is discussed. Control of the mode coefficients in the oversized waveguide is directly related to the far-field radiation pattern synthesis. These calculated results are verified by measurements in the 61.25 GHz band.

  • The Multiple Point Global Lanczos Method for Multiple-Inputs Multiple-Outputs Interconnect Order Reductions

    Chia-Chi CHU  Ming-Hong LAI  Wu-Shiung FENG  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2706-2716

    The global Lanczos algorithm for solving the RLCG interconnect circuits is presented in this paper. This algorithm is an extension of the standard Lanczos algorithm for multiple-inputs multiple-outputs (MIMO) systems. A new matrix Krylov subspace will be developed first. By employing the congruence transformation with the matrix Krylov subspace, the two-side oblique projection-based method can be used to construct a reduced-order system. It will be shown that the system moments are still matched. The error of the 2q-th order system moment will be derived analytically. Furthermore, two novel model-order reduction techniques called the multiple point global Lanczos (MPGL) method and the adaptive-order global Lanczos (AOGL) method which are both based on the multiple point moment matching are proposed. The frequency responses using the multiple point moment matching method have higher coherence to the original system than those using the single point expansion method. Finally, simulation results on frequency domain will illustrate the feasibility and the efficiency of the proposed methods.

  • Design of 1 m2 Order Plasma Excitation Single-Layer Slotted Waveguide Array with Conducting Baffles and Quartz Glass Strips Using the GSM-MoM Analysis

    Takuichi HIRANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Tetsuya IDE  Atsushi SASAKI  Kazufumi AZUMA  Yukihiko NAKATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1627-1635

    The authors have proposed a 1 m2 single-layer slotted waveguide array consisting of conducting baffles and quartz glass strips positioned in front of the slot aperture, which is referred to as a vacuum window, for microwave plasma excitation. The effect of the complicated outer vacuum window hinders the realization of uniform distribution. In this paper, a unit-cell of the alternating-phase fed single-layer slotted waveguide array with the vacuum window is analyzed by generalized scattering matrix method (GSM)-method of moments (MoM) hybridization analysis, and the array is designed to realize uniform aperture electromagnetic field distribution, where the plasma and the chamber is neglected. The GSM-MoM analysis gives reliable numerical results while the MoM has numerical errors due to singularities of Green's function for a long cavity. Uniform aperture EM field distribution outside of the vacuum window is observed in near field measurements using a 1/5 scale model antenna, and the validity of the analysis and design is verified.

  • Analysis of Large-Scale Periodic Array Antennas by CG-FFT Combined with Equivalent Sub-Array Preconditioner

    Huiqing ZHAI  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  Changhong LIANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:3
      Page(s):
    922-928

    This paper presents method that offers the fast and accurate analysis of large-scale periodic array antennas by conjugate-gradient fast Fourier transform (CG-FFT) combined with an equivalent sub-array preconditioner. Method of moments (MoM) is used to discretize the electric field integral equation (EFIE) and form the impedance matrix equation. By properly dividing a large array into equivalent sub-blocks level by level, the impedance matrix becomes a structure of Three-level Block Toeplitz Matrices. The Three-level Block Toeplitz Matrices are further transformed to Circulant Matrix, whose multiplication with a vector can be rapidly implemented by one-dimension (1-D) fast Fourier transform (FFT). Thus, the conjugate-gradient fast Fourier transform (CG-FFT) is successfully applied to the analysis of a large-scale periodic dipole array by speeding up the matrix-vector multiplication in the iterative solver. Furthermore, an equivalent sub-array preconditioner is proposed to combine with the CG-FFT analysis to reduce iterative steps and the whole CPU-time of the iteration. Some numerical results are given to illustrate the high efficiency and accuracy of the present method.

  • Gamma Modeling of Speech Power and Its On-Line Estimation for Statistical Speech Enhancement

    Tran Huy DAT  Kazuya TAKEDA  Fumitada ITAKURA  

     
    PAPER-Speech Enhancement

      Vol:
    E89-D No:3
      Page(s):
    1040-1049

    This study shows the effectiveness of using gamma distribution in the speech power domain as a more general prior distribution for the model-based speech enhancement approaches. This model is a super-set of the conventional Gaussian model of the complex spectrum and provides more accurate prior modeling when the optimal parameters are estimated. We develop a method to adapt the modeled distribution parameters from each actual noisy speech in a frame-by-frame manner. Next, we derive and investigate the minimum mean square error (MMSE) and maximum a posterior probability (MAP) estimations in different domains of speech spectral magnitude, generalized power and its logarithm, using the proposed gamma modeling. Finally, a comparative evaluation of the MAP and MMSE filters is conducted. As the MMSE estimations tend to more complicated using more general prior distributions, the MAP estimations are given in closed-form extractions and therefore are suitable in the implementation. The adaptive estimation of the modeled distribution parameters provides more accurate prior modeling and this is the principal merit of the proposed method and the reason for the better performance. From the experiments, the MAP estimation is recommended due to its high efficiency and low complexity. Among the MAP based systems, the estimation in log-magnitude domain is shown to be the best for the speech recognition as the estimation in power domain is superior for the noise reduction.

61-80hit(168hit)