The search functionality is under construction.

Keyword Search Result

[Keyword] multi-Vdd(3hit)

1-3hit
  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.

  • Multi-Voltage Variable Pipeline Routers with the Same Clock Frequency for Low-Power Network-on-Chips Systems

    Akram BEN AHMED  Hiroki MATSUTANI  Michihiro KOIBUCHI  Kimiyoshi USAMI  Hideharu AMANO  

     
    PAPER

      Vol:
    E99-C No:8
      Page(s):
    909-917

    In this paper, the Multi-voltage (multi-Vdd) variable pipeline router is proposed to reduce the power consumption of Network-on-Chips (NoCs) designed for Chip Multi-processors (CMPs). The multi-Vdd variable pipeline router adjusts its pipeline depth (i.e., communication latency) and supply voltage level in response to the applied workload. Unlike Dynamic Voltage and Frequency Scaling (DVFS) routers, the operating frequency remains the same for all routers throughout the CMP; thus, omitting the need to synchronize neighboring routers working at different frequencies. Two types of router architectures are presented: a Coarse-Grained Variable Pipeline (CG-VP) router that changes the voltage supplied to the entire router, and a Fine-Grained Variable Pipeline (FG-VP) router that uses a finer power partition. The evaluation results showed that the CG-VP and FG-VP routers achieve a 22.9% and 35.3% power reduction on average with 14% and 23% area overhead in comparison with a baseline router without variable pipelines, respectively. Thanks to the adopted look-ahead mechanism to switch the supply voltage, the performance overhead is only 4.4%.

  • Level Converting Flip-Flops for High-Speed and Low-Power Applications

    Hyoun Soo PARK  Bong Hyun LEE  Young Hwan KIM  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1740-1743

    This letter presents two high-performance level-converting flip-flops (LCFF) for multi-VDD systems, indirect precharging flip-flop (IPFF) and multi-supply complementary pass-transistor flip-flop (MCPFF). Employing a simple precharging scheme, IPFF provides high operating speed. MCPFF, on the other hand, provides low power operations by implementing the edge-triggering function with complementary pass transistors. Performance comparison indicates that IPFF operates at the highest speed and MCPFF consumes the lowest power among the seven LCFFs under evaluation.