Chengtao XU Xiaomei TANG Yangbo HUANG Feixue WANG
This paper proposes a technique for efficient standing multipath mitigation of geostationary earth orbit (GEO) satellites. The performance of traditional filtering methods for GEO multipath errors can be effectively improved by using carrier frequency variation approach. Conventional multipath mitigation methods do not pay much attention to the GEO satellite multipath effects, and they are less effective due to the non-zero average characteristics of GEO multipath errors for short epochs. By varying carrier frequency, the multipath error average becomes approaching zero in short epochs due to the faster multipath carrier phase variation. Therefore, it could enhance the traditional filtering method performance on the multipath signals. By varying the carrier frequency or the carrier phase offset, the average multipath error will approach zero as a result of the frequent multipath carrier phase variations. This method aims to explore the potential for signal pattern design while improving the performance of current satellite navigation systems. The results show that the root mean square error (RMSE) for pseudo-range multipath errors of the proposed approach improves about 0.3m with a frequency variation range of 15MHz.
Zhigang CHEN Lei WANG He HUANG Guomei ZHANG
A novel virtual sensors-based positioning method has been presented in this paper, which can make use of both direct paths and indirect paths. By integrating the virtual sensor idea and Bayesian state and observation framework, this method models the indirect paths corresponding to persistent virtual sensors as virtual direct paths and further reformulates the wireless positioning problem as the maximum likelihood estimation of both the mobile terminal's positions and the persistent virtual sensors' positions. Then the method adopts the EM (Expectation Maximization) and the particle filtering schemes to estimate the virtual sensors' positions and finally exploits not only the direct paths' measurements but also the indirect paths' measurements to realize the mobile terminal's positions estimation, thus achieving better positioning performance. Simulation results demonstrate the effectiveness of the proposed method.
Zhe LIU Yangbo HUANG Xiaomei TANG Feixue WANG
A novel multipath mitigation algorithm for binary offset carrier (BOC) signals in the global navigation satellite system (GNSS) is presented. Based on the W2 code correlation reference waveform (CCRW) structure, a series of bipolar reference waveforms (BRWs) is introduced to shape the unambiguous s-curve. The resulted s-curve has a single stable zero-crossing point such that the tracking unambiguity in BOC (1,1) can be solved. At the same time, multipath mitigation capability is improved as well. As verified by simulations, the proposed method matches the multipath mitigation performance of W2 CCRW, and is superior to conventional receiver correlation techniques. This method can be applied in GPS L1 and Galileo E1.
With shortest path bridging MAC (SPBM), shortest path trees are computed based on link metrics from each node to all other participating nodes. When an edge bridge receives a frame, it selects a path along which to forward the frame to its destination node from multiple shortest paths. Blocking ports are eliminated to allow full use of the network links. This approach is expected to use network resources efficiently and to simplify the operating procedure. However, there is only one multipath distribution point in the SPBM network. This type of network can be defined as an end-to-end multipath network. Edge bridges need to split flows to achieve the load balancing of the entire network. This paper proposes a rate-based path selection scheme that can be employed for end-to-end multipath networks including SPBM. The proposed scheme assumes that a path with a low average rate will be congested because the TCP flow rates decrease on a congested path. When a new flow arrives at an edge bridge, it selects the path with the highest average rate since this should provide the new flow with the highest rate. The performance of the proposed scheme is confirmed by computer simulations. The appropriate timeout value is estimated from the expected round trip time (RTT). If an appropriate timeout value is used, the proposed scheme can realize good load balancing. The proposed scheme improves the efficiency of link utilization and throughput fairness. The performance is not affected by differences in the RTT or traffic congestion outside the SPBM network.
Sen ZHONG Wei XIA Lingfeng ZHU Zishu HE
In the localization systems based on time difference of arrival (TDOA), multipath fading and the interference source will deteriorate the localization performance. In response to this situation, TDOA estimation based on blind beamforming is proposed in the frequency domain. An additional constraint condition is designed for blind beamforming based on maximum power collecting (MPC). The relationship between the weight coefficients of the beamformer and TDOA is revealed. According to this relationship, TDOA is estimated by discrete Fourier transform (DFT). The efficiency of the proposed estimator is demonstrated by simulation results.
In the traditional time delay estimation methods, it is usually implicitly assumed that the observed signals are either only direct path propagate or coherently received. In practice, the multipath propagation and incoherent reception always exist simultaneously. In response to this situation, the joint maximum likelihood (ML) estimation of multipath delays and system error is proposed, and the estimation of the number of multipath is considered as well for the specific incoherent signal model. Furthermore, an algorithm based Gibbs sampling is developed to solve the multi-dimensional nonlinear ML estimation. The efficiency of the proposed estimator is demonstrated by simulation results.
Makoto TANAKA Hisato IWAI Hideichi SASAOKA
In recent years, various applications based on propagation characteristics have been developed. They generally utilize the locality of the fading characteristics of multipath environments. On the other hand, if a received signal at a remote location can be estimated beyond the correlation distance of the multipath fading environment, a wide variety of new applications can be possible. In this paper, we attempt to estimate a received signal at a remote location using the MUSIC method and the least squares method. Based on the plane wave assumption for each arriving wave, multipath environment is analyzed through estimation of the directions of arrival by the MUISC method and the complex amplitudes of the received signals by the least squares method, respectively. We present evaluation results on the estimation performance of the method by computer simulations.
Inchul SONG Yohan J. ROH Myoung Ho KIM
In this letter, we propose an energy-efficient in-network processing method for continuous grouped aggregation queries in wireless sensor networks. As in previous work, in our method sensor nodes partially compute aggregates as data flow through them to reduce data transferred. Different from other methods, our method considers group information of partial aggregates when sensor nodes forward them to next-hop nodes in order to maximize data reduction by same-group partial aggregation. Through experimental evaluation, we show that our method outperforms the existing methods in terms of energy efficiency.
Jong-Ho LEE Ji-won CHOI Jae-Hoon JUNG Seong-Cheol KIM Yong-Hwa KIM
In this paper, we propose an analog cancellation scheme for multipath self-interference channels in full-duplex wireless orthogonal frequency-division multiplexing (OFDM) systems. The conventional approaches emulate the radio-frequency (RF) self-interference signals by passing the RF transmit signals through delay lines and programmable attenuators. By contrast, our proposed scheme computes the phase-rotated and weighted versions of the baseband transmit signals in the baseband domain, which are simply upconverted to obtain the emulated RF self-interference signals. Numerical results are presented to verify the suppression performance of the proposed scheme.
Xiao Yu LUO Ping WEI Lu GAN Hong Shu LIAO
Recently, Gan and Luo have proposed a direction-of-arrival estimation method for uncorrelated and coherent signals in the presence of multipath propagation [3]. In their method, uncorrelated and coherent signals are distinguished by rotational invariance techniques and the property of the moduli of eigenvalues. However, due to the limitation of finite number of sensors, the pseudo-inverse matrix derived in this method is an approximate one. When the number of sensors is small, the approximation error is large, which adversely affects the property of the moduli of eigenvalues. Consequently, the method in [3] performs poorly in identifying uncorrelated signals under such circumstance. Moreover, in cases of small number of snapshots and low signal to noise ratio, the performance of their method is poor as well. Therefore, in this letter we first study the approximation in [3] and then propose an improved method that performs better in distinguishing between uncorrelated signals and coherent signals and in the aforementioned two cases. The simulation results demonstrate the effectiveness and efficiency of the proposed method.
Hiroyuki HATANO Tomoya KITANI Masahiro FUJII Atsushi ITO Yu WATANABE Hironobu ONISHI Toru AOKI
For estimating user's location, Global Navigation Satellite System (GNSS) is very useful. Especially, Global Positioning System (GPS) by USA is very popular. A GPS receiver needs multiple satellites (usually 4 and more satellites). Propagation to the satellites needs line-of-sight. However, in urban area, there are many buildings. Received signals tend to become bad quality. Such signals are often called as non-line-of-sight (NLOS) or multipath signals. The problem is that the receiver cannot get line-of-sight signals from adequate number of the satellites coinstantaneously. This case leads to degradation of estimation quality or impossibility of estimation. In this paper, we will introduce a novel estimation algorithm, which can estimate own position with as low number of satellites as possible. The proposal achieves the estimation by only two satellites. The proposal also uses a traveling distance sensor which is often equipped on vehicles. By recorded satellite data, we will confirm our effectiveness.
Chengcheng LIU Dexiu HU Yongjun ZHAO
In this paper, the spatial smoothing (SS) method is extended to the wideband multipath case. By reordering the array input signal and the weight vector, the corresponding covariance matrix of each subarray can be constructed conveniently. Then, a novel wideband beamforming algorithm, based on the SS method (SS-WB), can be achieved by linearly constrained minimum variance (LCMV). Further improvement of the output signal-to-interference-plus-noise ratio (SINR) for SS-WB can be obtained by removing the desired signal in the observed array data with the reconstruction of covariance matrix, which is denoted as wideband beamformer based on modified SS method (MSS-WB). Both proposed algorithms can reduce the desired signal cancellation due to the super decorrelation ability of SS method and MSS-WB can lead to a significantly improved output SINR. The simulations verify their effectiveness in the multipath environment.
This paper proposes a compact three-mode H-shaped resonator bandpass filter fed by antiparallel coupled input/output lines. To investigate the resonant behavior of the H-shaped resonator, even/odd-mode resonance conditions of the resonator are first derived analytically. The multimode resonances of the H-shaped resonator filter are modeled by a multipath circuit formed with resonance paths. Moreover, a direct source/load coupling path is connected in parallel, of which the value shows a frequency dependency because of the antiparallel coupled feeding lines, thereby generating four transmission zeros (TZs) greater than the number of a theoretical limitation. The H-shaped resonator bandpass filter is synthesized, developed, and tested, showing a third-order passband response with four TZs located near the passband, and a wide stopband property.
A covariance-based algorithm is proposed to find a barrage jammer suppression filter for surveillance radar with an adaptive array. The conventional adaptive beamformer (ABF) or adaptive sidelobe canceller (ASLC) with auxiliary antennas can be used successfully in sidelobe jammer rejection. When a jammer shares the same bearing with the target of interest, however, those methods inherently cancel the target in their attempt to null the jammer. By exploiting the jammer multipath scattered returns incident from other angles, the proposed algorithm uses only the auto-covariance matrix of the sample data produced by stacking range cell returns in a pulse repetition interval (PRI). It does not require estimation of direction of arrival (DOA) or time difference of arrival (TDOA) of multipath propagation, thus making it applicable to electronic countermeasure (ECM) environments with high power barrage jammers and it provides the victim radar with the ability to null both the sidelobe (sidebeam) and mainlobe (mainbeam) jammers simultaneously. Numeric simulations are provided to evaluate the performance of this filter in the presence of an intensive barrage jammer with jammer-to-signal ratio (JSR) greater than 30dB, and the achieved signal-to-jammer-plus-noise ratio (SJNR) improvement factor (IF) exceeds 46dB.
Kazuhiro HONDA Kun LI Koichi OGAWA
This paper presents the shadowing analysis of a body area network (BAN) diversity antenna based on the statistical measurements of the human walking motion. First, the dynamic characteristics of the arm-swing motion were measured using human subjects, and a statistical analysis was then carried out using the measured data to extract useful information for the analysis of a BAN diversity antenna. Second, the analytical results of the shadowing effects of the BAN antenna were shown based on the statistical data of the swing motion. The difference between the typical and the realistic arm-swinging models significantly affected the bit error rate (BER) characteristic of the BAN antenna. To eliminate the shadowing caused by the movement of the arms, a BAN diversity antenna was used. Particular emphasis was placed on the evaluation of the spatial separation of the diversity antennas to attain reduction of the signal-to-noise ratio (SNR) required to achieve a specific BER performance, considering the combined outcome of shadowing and multipath fading unique to BAN antenna systems. We determined that an antenna angle separation of greater than 80° is required to reduce the shadowing effects when the diversity antenna is mounted at the left waist in a symmetrical configuration. Further, an antenna angle separation of 120° is required when the diversity antenna is mounted in an asymmetric configuration.
This paper proposes T-CROM (Time-delayed Collaborative ROuting and MAC) protocol, that allows collaboration between network and MAC layers in order to extend the lifetime of MANETs in a resources-limited environment. T-CROM increases the probability of preventing energy-poor nodes from joining routes by using a time delay function that is inversely proportional to the residual battery capacity of intermediate nodes, making a delay in the route request (RREQ) packets transmission. The route along which the first-arrived RREQ packet traveled has the smallest time delay, and thus the destination node identifies the route with the maximum residual battery capacity. This protocol leads to a high probability of avoiding energy-poor nodes and promotes energy-rich nodes to join routes in the route establishment phase. In addition, T-CROM controls the congestion between neighbors and reduces the energy dissipation by providing an energy-efficient backoff time by considering both the residual battery capacity of the host itself and the total number of neighbor nodes. The energy-rich node with few neighbors has a short backoff time, and the energy-poor node with many neighbors gets assigned a large backoff time. Thus, T-CROM controls the channel access priority of each node in order to prohibit the energy-poor nodes from contending with the energy-rich nodes. T-CROM fairly distributes the energy consumption of each node, and thus extends the network lifetime collaboratively. Simulation results show that T-CROM reduces the number of total collisions, extends the network lifetime, decreases the energy consumption, and increases the packet delivery ratio, compared with AOMDV with IEEE 802.11 DCF and BLAM, a battery-aware energy efficient MAC protocol.
Kazuo MOROKUMA Atsushi TAKEMOTO Yoshio KARASAWA
We propose a novel propagation measurement scheme for terrestrial TV signal indoor reception based on a virtual array technique. The system proposed in this paper carries out two-branch recording of target signals and the reference signal. By using the signal phase reference in the reference signal, we clarify the spatial propagation characteristics obtained from the two-dimensional virtual array outputs. Outdoor measurements were performed first to investigate the validity of the proposed measurement system. The results confirm its effectiveness in accurately determining the direction-of-arrival (DOA). We then investigated the propagation characteristics in an indoor environment. The angular spectrum obtained showed clear wave propagation structure. Thus, our proposed system is promising as a very accurate measurement tool for indoor propagation analysis.
In this paper, we investigate the impact of different sub-band spreading bandwidth (SSBW) on a direct sequence (DS) multiband (MB) ultra wideband (UWB) system in multipath and narrowband interference over realistic UWB channel models based on actual measurements. As an approach to effectively mitigate multipath and narrowband interference, the DS-MB-UWB system employs multiple sub-bands instead of a wide single band for data transmission. By using spreading chips with different duration settings, the SSBW can be manipulated. As a result, it is observed that increasing SSBW does not always improve system performance. Optimum SSBW values exist and are found to vary in accordance to different operating parameters such as the number of sub-bands and types of propagation channel model. Additionally, we have also found that system performance in the presence of narrowband interference is heavily dependent on the number of employed sub-bands.
In this paper, an extended best linear unbiased estimator (EBLUE) based on a periodic training sequence is proposed and investigated for frequency offset estimation in orthogonal frequency division multiplexing (OFDM) systems. The structure of EBLUE is general and flexible so it adapts to different complexity constraints, and is attractive in practical implementation. Performance analysis and design strategy of EBLUE are provided to realize the best tradeoff between performance and complexity. Moreover, closed-form results of both weight and performance make EBLUE even more attractive in practical implementation. Both the performance and complexity of EBLUE are compared with other proposals and the Cramer-Rao lower bound (CRLB) to demonstrate the merit of EBLUE.
Yutaro NAKAGAWA Mamiko INAMORI Yukitoshi SANADA
In this paper, an imaging components transmission scheme for the improvement of multipath delay resolution in a Fractional Sampling (FS) OFDM receiver is proposed. FS has been proposed as a diversity scheme and achieves path diversity by enlarging the bandwidth of the baseband filters in order to transmit the imaging components of the desired signal. However, FS is not able to achieve diversity with very short delay multipaths because of its low multipath delay resolution. Wider bandwidth of the transmission signal is required to improve the resolution of the delay. On the other hand, cognitive radio is an emerging technology to utilize frequency spectrum flexibly through dynamic spectrum access (DSA). To resolve the small delay multipaths and to use the spectrum flexibly with DSA, this paper investigates the FS path diversity with the imaging components on the separated frequency channel. The correlation between the 2 FS branches is analyzed theoretically on the 2 path channel under the conditions of sampling interval, delay spread, and frequency separation. Numerical results through computer simulation show that the proposed scheme improves the multipath resolution and the bit error rate (BER) performance under the existence of small delay multipaths.