Takahiro KODAMA Gabriella CINCOTTI
A novel adaptive code division multiplexing system with hybrid electrical and optical codes is proposed for flexible and dynamic resource allocation in next generation asynchronous optical access networks. We analyze the performance of a 10Gbps × 12 optical node unit, using hierarchical 8-level optical and 4-level electrical phase shift keying codes.
Donggu KIM Hoojin LEE Joonhyuk KANG
This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.
In this letter, we analyze performances of a frequency offset estimation based on the maximum likelihood criterion and provide a theoretical proof that the mean squared error of the estimation grows with increase in the offset. Moreover, we propose a new iterative offset estimation method based on the analysis. By computer simulations, we show that the proposed estimator can achieve the lowest estimation error after a few iterations.
Naoki TAKADA Masato FUJIWARA ChunWei OOI Yuki MAEDA Hirotaka NAKAYAMA Takashi KAKUE Tomoyoshi SHIMOBABA Tomoyoshi ITO
This study involves proposing a high-speed computer-generated hologram playback by using a digital micromirror device for high-definition spatiotemporal division multiplexing electroholography. Consequently, the results indicated that the study successfully reconstructed a high-definition 3-D movie of 3-D objects that was comprised of approximately 900,000 points at 60 fps when each frame was divided into twelve parts.
Yuta WAKAYAMA Hidenori TAGA Takehiro TSURITANI
This paper presents an application of low-coherence interferometry for measurement of mode field diameters (MFDs) of a few-mode fiber and shows its performance compared with another method using a mode multiplexer. We found that the presented method could measure MFDs in a few-mode fiber even without any special mode multiplexers.
Toshio MORIOKA Yoshinari AWAJI Yuichi MATSUSHIMA Takeshi KAMIYA
Research efforts initiated by the EXAT Initiative are described to realize Exabit/s optical communications, utilizing the 3M technologies, i.e. multi-core fiber, multi-mode control and multi-level modulation.
To drastically increase the splitting ratio of extended-reach (40km span) time- and wavelength-division multiplexed passive optical networks (WDM/TDM-PONs), we modify the gain control scheme of our automatic gain controlled semiconductor optical amplifiers (AGC-SOAs) that were developed to support upstream transmission in long-reach systems. While the original AGC-SOAs are located outside the central office (CO) as repeaters, the new AGC-SOAs are located inside the CO and connected to each branch of an optical splitter in the CO. This arrangement has the potential to greatly reduce the costs of CO-sited equipment as they are shared by many more users if the new gain control scheme works properly even when the input optical powers are low. We develop a prototype and experimentally confirm its effectiveness in increasing the splitting ratio of extended-reach systems to 512.
Tatsunori OBARA Tatsuki OKUYAMA Yuki INOUE Yuuichi AOKI Satoshi SUYAMA Jaekon LEE Yukihiko OKUMURA
This paper presents some results of an experimental trial for the 5th generation (5G) wireless communication systems using 28GHz band. In order to tackle rapidly increasing traffic for 2020 and beyond, new radio access networks for the 5G mobile communication systems will introduce the use of higher frequency bands such as spectra higher than 10GHz to achieve higher capacity and super high bit rate transmission of several tens of Gbps. The target of this experimental trial is to evaluate the feasibility of using the 28GHz band with super-wide bandwidth of 800MHz for 5G wireless communication systems. To compensate large path-loss in higher frequency, the beamforming (BF) based on Massive multiple-input multiple-output (MIMO) is one of promising techniques and can be combined with spatial multiplexing of multiple data streams to achieve much higher capacity. In addition, to support the mobility of mobile station (MS), beam tracking technique is important. In this trial, we first conduct a basic experiment of single-stream transmission by using prototype system with base station (BS) having 96-element antenna and MS having 8-element antenna to evaluate the effectiveness of joint transmitter/receiver BF in 28GHz band in terms of coverage, impact of path loss, shadowing loss and penetration loss under indoor, outdoor and outdoor-to-indoor (O-to-I) environments. We show that by using 28 GHz band with BF based on Massive MIMO, higher throughput near 1.2Gbps can be achieved at many points in the indoor environment. It is also shown that the throughput of over 1Gbps can be achieved at points around 200m distant from BS in outdoor line-of-site (LOS) environment. Secondly, to evaluate the effectiveness of spatial multiplexing and beam tracking under more realistic environment, we also conduct the outdoor experiment of BF combined with 2-stream spatial multiplexing in high mobility environment with MS speed of up to 60km/h by using smartphone-shape MS antenna. We also show that maximum throughput of 3.77Gbps can be achieved with MS speed of 60km/h by using BF with 2-stream multiplexing and beam tracking.
Heon HUH Feng LU James V. KROGMEIER
In OFDM systems, link performance depends heavily on the estimation of symbol-timing and frequency offsets. Performance sensitivity to these estimates is a major drawback of OFDM systems. Timing errors destroy the orthogonality of OFDM signals and lead to inter-symbol interference (ISI) and inter-carrier interference (ICI). The interference due to timing errors can be exploited as a metric for symbol-timing synchronization. In this paper, we propose a novel method to extract interference components using a DFT of the upsampled OFDM signals. Mathematical analysis and formulation are given for the dependence of interference on timing errors. From a numerical analysis, the proposed interference estimation shows robustness against channel dispersion.
Doohwan LEE Hirofumi SASAKI Hiroyuki FUKUMOTO Ken HIRAGA Tadao NAKAGAWA
This paper explores the potential of orbital angular momentum (OAM) multiplexing as a means to enable high-speed wireless transmission. OAM is a physical property of electro-magnetic waves that are characterized by a helical phase front in the propagation direction. Since the characteristic can be used to create multiple orthogonal channels, wireless transmission using OAM can enhance the wireless transmission rate. Comparisons with other wireless transmission technologies clarify that OAM multiplexing is particularly promising for point-to-point wireless transmission. We also clarify three major issues in OAM multiplexing: beam divergence, mode-dependent performance degradation, and reception (Rx) signal-to-noise-ratio (SNR) reduction. To mitigate mode-dependent performance degradation we first present a simple but practical Rx antenna design method. Exploiting the fact that there are specific location sets with phase differences of 90 or 180 degrees, the method allows each OAM mode to be received at its high SNR region. We also introduce two methods to address the Rx SNR reduction issue by exploiting the property of a Gaussian beam generated by multiple uniform circular arrays and by using a dielectric lens antenna. We confirm the feasibility of OAM multiplexing in a proof of concept experiment at 5.2 GHz. The effectiveness of the proposed Rx antenna design method is validated by computer simulations that use experimentally measured values. The two new Rx SNR enhancement methods are validated by computer simulations using wireless transmission at 60 GHz.
Kyota HATTORI Masahiro NAKAGAWA Toshiya MATSUDA Masaru KATAYAMA Katsutoshi KODA
Improvement of conventional networks with an incremental approach is an important design method for the development of the future internet. For this approach, we are developing a future aggregation network based on passive optical network (PON) technology to achieve both cost-effectiveness and high reliability. In this paper, we propose a timeslot (TS) synchronization method for sharing a TS from an optical burst mode transceiver between any route of arbitrary fiber length by changing both the route of the TS transmission and the TS control timing on the optical burst mode transceiver. We show the effectiveness of the proposed method for exchanging TSs in bidirectional bufferless wavelength division multiplexing (WDM) and time division multiplexing (TDM) multi-ring networks under the condition of the occurrence of a link failure through prototype systems. Also, we evaluate the reduction of the required number of optical interfaces in a multi-ring network by applying the proposed method.
Hiroshi KUBO Takuma YAMAGISHI Toshiki MORI
This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.
This paper studies a novel iterative detection algorithm for data detection in orthogonal frequency division multiplexing systems in the presence of phase noise (PHN) and channel estimation errors. By simplifying the maximum a posteriori algorithm based on the theory of variational inference, an optimization problem over variational free energy is formulated. After that, the estimation of data, PHN and channel state information is obtained jointly and iteratively. The simulations indicate the validity of this algorithm and show a better performance compared with the traditional schemes.
Ilmiawan SHUBHI Yuji HAYASHI Hidekazu MURATA
In multi user multiple input multiple output systems, spatial precoding is typically employed as an interference cancellation technique. This technique, however, requires accurate channel state information at the transmitter and limits the mobility of the mobile station (MS). Instead of spatial precoding, this letter implements collaborative interference cancellation (CIC) for interference suppression. In CIC, neighboring MSs share their received signals without decoding and equivalently increase the number of received antennas. The performance is evaluated through a field experiment using a vehicle that is equipped with seven MSs and moves around an urban area.
This paper presents a weighted diversity combining technique for the cyclostationarity detection based spectrum sensing of orthogonal frequency division multiplexing signals in cognitive radio. In cognitive radio systems, secondary users must detect the desired signal in an extremely low signal-to-noise ratio (SNR) environment. In such an environment, multiple antenna techniques (space diversity) such as maximum ratio combining are not effective because the energy of the target signal is also extremely weak, and it is difficult to synchronize some received signals. The cyclic autocorrelation function (CAF) is used for traditional cyclostationarity detection based spectrum sensing. In the presented technique, the CAFs of the received signals are combined, while the received signals themselves are combined with general space diversity techniques. In this paper, the value of the CAF at peak and non-peak cyclic frequencies are computed, and we attempt to improve the sensing performance by using different weights for each CAF value. The results were compared with those from conventional methods and showed that the presented technique can improve the spectrum sensing performance.
Yu ZHAO Xihong CHEN Lunsheng XUE Jian LIU Zedong XIE
In this paper, we present the channel estimation (CE) problem in the orthogonal frequency division multiplexing system with offset quadrature amplitude modulation (OFDM/OQAM). Most CE methods rely on the assumption of a low frequency selective channel to tackle the problem in a way similar to OFDM. However, these methods would result in a severe performance degradation of the channel estimation when the assumption is not quite inaccurate. Instead, we focus on estimating the channel impulse response (CIR) itself which makes no assumption on the degree of frequency selectivity of the channels. After describing the main idea of this technique, we present an iterative CE method that does not require zero-value guard symbols in the preamble and consequently improves the spectral efficiency. This is done by the iterative estimation of the unknown transmitted data adjacent to the preamble. Analysis and simulation results validate the efficacy of the proposed method in multipath fading channels.
Chang Kyung SUNG Kyu-Sung HWANG
In this paper, we consider a two-hop relay network with a decode-and-forward (DF) relaying protocol where a multi-input/multi-output (MIMO) relay station (RS) is deployed in a cell edge to extend cell coverage of a base station (BS). We propose two MIMO relaying schemes to improve the quality of the BS-RS link, which is a key to improve data rates in the DF relaying: 1) spatial multiplexed MIMO antenna relaying (SM-MAR) with a uniform channel decomposition (UCD) precoder, and 2) MIMO relaying with section diversity (SD-MAR). In the SM-MAR, we greatly simplify user allocation by the UCD precoder and propose a sophisticated rate maximization technique to resolve the non-convexity of rate maximization problems. Through simulations, we show that the proposed UCD based power allocation exhibits up to two times higher achievable throughput than other techniques. In addition, the proposed SD-MAR supports the BS with a single transmit antenna and increases the signal quality of the BS-RS link with the selection diversity at the RS, which is much simpler to be implemented. For the SD-MAR, we derive a closed form expression for the achievable throughput and show that the selection diversity plays more important role on the achievable throughput than the multiuser diversity.
Controlling the peak-to-mean envelope power ratio (PMEPR) of orthogonal frequency-division multiplexed (OFDM) transmissions is a significant obstacle in many low-cost applications of OFDM. An coding approach proposed by H.R. Sadjadpour presents non-square M-QAM symbols as a combination of QPSK and BPSK signals when M=22n+1, and then uses QPSK and BPSK Golay (or Golay-like) sequences with a constant PMEPR to generate M-QAM sequences. This paper proposes a new scheme in which M-QAM sequences are generated by QPSK and BPSK sequences with variable PMEPRs. In other words, this new scheme is a general case of the existing approach. As a result, the code rate of the new sequence is significantly improved, while the upper bound of its PMEPR remains at a comparative level.
Phuc V. TRINH Ngoc T. DANG Truong C. THANG Anh T. PHAM
This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.
Kee-Hoon KIM Hyun-Seung JOO Jong-Seon NO Dong-Joon SHIN
Many selected mapping (SLM) schemes have been proposed to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal sequences. In this paper, an efficient selection (ES) method of the OFDM signal sequence with minimum PAPR among many alternative OFDM signal sequences is proposed; it supports various SLM schemes. Utilizing the fact that OFDM signal components can be sequentially generated in many SLM schemes, the generation and PAPR observation of the OFDM signal sequence are processed concurrently. While the u-th alternative OFDM signal components are being generated, by applying the proposed ES method, the generation of that alternative OFDM signal components can be interrupted (or stopped) according to the selection criteria of the best OFDM signal sequence in the considered SLM scheme. Such interruption substantially reduces the average computational complexity of SLM schemes without degradation of PAPR reduction performance, which is confirmed by analytical and numerical results. Note that the proposed method is not an isolated SLM scheme but a subsidiary method which can be easily adopted in many SLM schemes in order to further reduce the computational complexity of considered SLM schemes.