The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiplexing(419hit)

121-140hit(419hit)

  • Performance Analysis of Opportunistic and All-Participate Relaying with Imperfect Channel Estimation

    Lei WANG  Yueming CAI  Weiwei YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3151-3154

    For amplify-and-forward (AF) relaying with imperfect channel estimation, we present the average symbol error rate (SER) and the diversity and multiplexing tradeoff (DMT) analysis for both opportunistic relaying (OPR) and all-participate relaying (APR) schemes. SER comparisons show that when the channel estimation quality order is no larger than 1, OPR will perform worse than APR in high SNR region. Moreover, small channel estimation quality orders will also lead to significant DMT loss.

  • Effects of Multiple Antennas on Outage Performance of Decode-and-Forward Cooperative Networks with Relay Selection

    Wooju LEE  Dongweon YOON  Zhengyuan XU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3155-3159

    In this paper, we consider multiple source and destination antennas based on relay selection scheme to improve the end-to-end outage performance for decode-and-forward cooperative networks. We derive an exact closed-form expression of the outage probability for the proposed system over a Rayleigh fading channel and describe the diversity-multiplexing tradeoff of the system. We then analyze the effects of the number of source and destination antennas on the outage probabilities and diversity-multiplexing tradeoffs.

  • Regional Diversity-Multiplexing Tradeoff

    Won-Yong SHIN  Koji ISHIBASHI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:10
      Page(s):
    2868-2871

    The concept of regional diversity-multiplexing tradeoff (DMT) is introduced by extending the asymptotic outage probability expression for multiple-input multiple-output (MIMO) channels. It is shown that for both Rayleigh and Rician MIMO channels, the regional diversity gain is a linear function of the regional multiplexing gain and that the original DMT curve can be obtained from the set of regional DMT lines. As a result, vital information for capturing both finite and infinite signal-to-noise ratio characteristics in terms of DMT is provided.

  • Robust Physical Layer Signaling Transmission over OFDM Systems

    Lifeng HE  Fang YANG  Zhaocheng WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2900-2902

    In this letter, a novel physical layer signaling transmission scheme is proposed, where the signaling information is conveyed by a pair of training sequences located in the odd and even subcarriers of an orthogonal frequency division multiplexing (OFDM) training symbol. At the receiver side, only a single correlator is required to detect the signaling information. Computer simulations verify the proposed signaling could outperform the S1 signaling and achieve similar robustness as the S2 signaling of the DVB-T2 standard.

  • Statistical Characteristics of OFDM Systems over Frequency-Selective Rician Fading Channels and Its Application to BER Study

    Zhiwei MAO  Julian CHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2565-2573

    Some statistical characteristics, including the means and the cross-correlations, of frequency-selective Rician fading channels seen by orthogonal frequency division multiplexing (OFDM) subcarriers are derived in this paper. Based on a pairwise error probability analysis, the mean vector and the cross-correlation matrix are used to obtain an upper bound of the overall bit-error rate (BER) in a closed-form for coded OFDM signals with and without inter-carrier interference. In this paper, the overall BER is defined as the average BER of OFDM signals of all subcarriers obtained by considering their cross-correlations. Numerical examples are presented to compare the proposed upper bound of the overall BERs and the overall BERs obtained by simulations.

  • A Subspace-Based Optimization Strategy for Downlink Systems with Ill-Conditioned MIMO Channels

    Yung-Yi WANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E94-A No:8
      Page(s):
    1706-1714

    We propose an innovative and practically attainable downlink multi-cell MIMO system with distributed transmit beamforming design. The proposed system is referred to as the MIMO-MAP system which is aimed to mitigate the rank deficiency problem of those MIMO wireless channels that can not support high-order multiplexing gains. In the MIMO-MAP system, each mobile station is allowed to receive several independent data streams from multiple access points at the same time and the same frequency. To do this, a set of noise-subspace-based receive beamformers are employed to suppress the interference among the data streams from different access points. On the other hand, if we consider each receive beamformer as part of its associated wireless channel, we virtually reduce the antenna array at each receive mobile station to a single antenna. With this arrangement, we may have the transmit signal dimension high enough to pre-cancel the inter-stream-interferences at each transmit access point. As a result, the MIMO-MAP channel can be decomposed into a large number of independent subchannels which significantly increase the channel capacity.

  • A Virtual Layered Space-Frequency Receiver Architecture with Iterative Decoding

    Jun IMAMURA  Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    1994-2002

    In this paper, a novel receiver architecture is proposed for multiple-input-multiple-output (MIMO) systems; the proposed architecture helps achieve superior performance in multipath fading channels when the number of layered streams exceeds the number of receiving antennas. In this architecture, the concept of “virtual channel” is adopted to attain diversity gain even when successive detection is applied for reducing computational complexity, while orthogonal frequency division multiplexing (OFDM) is employed to combat multipath fading. Actually, successive detection is carried out in all possible virtual channels, and the virtual channel with the minimum error probability is detected with the assistance of the maximum a-posteriori (MAP) decoder in the architecture. In addition, soft input and soft output (SISO) iterative detection is introduced in the virtual channel estimation scheme. The performance of the proposed architecture is verified by computer simulations. This architecture can be implemented with lesser complexity than that in maximum likelihood detection (MLD), but the gain in the former case exceeds that in the latter by 4.5 dB at the BER of 10-3 for 42 MIMO-OFDM.

  • Reconfigurable Homogenous Multi-Core FFT Processor Architectures for Hybrid SISO/MIMO OFDM Wireless Communications

    Chin-Long WEY  Shin-Yo LIN  Pei-Yun TSAI  Ming-Der SHIEH  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:7
      Page(s):
    1530-1539

    Multi-core processors have been attracting a great deal of attention. In the domain of signal processing for communications, the current trends toward rapidly evolving standards and formats, and toward algorithms adaptive to dynamic factors in the environment, require programmable solutions that possess both algorithm flexibility and low implementation complexity. Reconfigurable architectures have demonstrated better tradeoffs between algorithm flexibility, implementation complexity, and energy efficiency. This paper presents a reconfigurable homogeneous memory-based FFT processor (MBFFT) architecture integrated in a single chip to provide hybrid SISO/MIMO OFDM wireless communication systems. For example, a reconfigurable MBFFT processor with eight processing elements (PEs) can be configured for one DVB-T/H with N=8192 and two 802.11n with N=128. The reconfigurable processors can perfectly fit the applications of Software Defined Radio (SDR) which requires more hardware flexibility.

  • Performance Evaluation of a Windowed-Sinc Function-Based Peak Windowing Scheme for OFDM Polar Transmitters

    Manjung SEO  Seokhun JEON  Sungbin IM  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:7
      Page(s):
    1505-1512

    This paper proposes a windowed-sinc function based peak-to-average power ratio (PAPR) reduction scheme for applying the polar transmitter techniques to orthogonal frequency division multiplexing (OFDM), where the high PAPR problem occurs. The proposed algorithm mitigates the effect of excessive suppression due to successive peaks or relatively high peaks of a signal, which is often observed when applying the conventional peak windowing scheme. The bit error rate (BER) and error vector magnitude (EVM) performances are measured for various window types and lengths. The simulation results demonstrate that the proposed algorithm achieves significant improvement in terms of BER and PAPR reduction performance while maintaining similar spectrum performance compared to the conventional peak windowing scheme.

  • 90 Gbaud NRZ-DP-DQPSK Modulation with Full-ETDM Technique Using High-Speed Optical IQ Modulator

    Atsushi KANNO  Takahide SAKAMOTO  Akito CHIBA  Masaaki SUDO  Kaoru HIGUMA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1179-1186

    We demonstrate high baud-rate DQPSK modulation with full-ETDM technique using a novel high-speed optical IQ modulator consisting of a ridge-type optical waveguide structure on a thin LiNbO3 substrate. Our fabrication technique achieves a drastic extension of the modulator's bandwidth and a reduction of half-wave voltage. Demonstration of 90-Gbaud NRZ-DP-DQPSK signal generation with the modulator successfully achieved a bit rate of 360-Gb/s under full-ETDM configuration.

  • Synthesis of 16 Quadrature Amplitude Modulation Using Polarization-Multiplexing QPSK Modulator

    Isao MOROHASHI  Takahide SAKAMOTO  Masaaki SUDO  Atsushi KANNO  Akito CHIBA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1809-1814

    We propose a polarization-multiplexing QPSK modulator for synthesis of a 16 QAM signal. The generation mechanism of 16 QAM is based on an electro-optic vector digital-to-analog converter, which can generate optical multilevel signals from binary electric data sequences. A quad-parallel Mach-Zehnder modulator (QPMZM) used in our previous research requires precise control of electric signals or fabrication of a variable optical attenuator, which significantly raises the degree of difficulty to control electric signals or device fabrication. To overcome this difficulty, we developed the polarization-multiplexing QPSK modulator, which improved the method of superposition of QPSK signals. In the polarization-multiplexing QPSK modulator, two QPSK signals are output with orthogonal polarization and superposed through a polarizer. The amplitude ratio between the two QPSK signals can be precisely controlled by rotating the polarizer to arrange the 16 symbols equally. Generation of 16 QAM with 40 Gb/s and a bit error rate of 5.6910-5 was successfully demonstrated using the polarization-multiplexing QPSK modulator. This modulator has simpler configuration than the previous one, utilized a dual-polarization MZM, alleviating complicated control of electric signals.

  • Optimum Frame Synchronization for OFDM Systems

    Heon HUH  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:6
      Page(s):
    1732-1735

    Orthogonal frequency division multiplexing has emerged as a promising air interface scheme for wireless broadband communications. For OFDM systems, frame synchronization has received much attention in the literature, though simple correlators are still widely used in real systems. In this letter, we present the analytical expression of the optimal frame synchronizer for OFDM systems. Frame synchronization is posed as a maximum a posteriori probability estimation. We show that the resulting frame synchronizer consists of a correlation term and a correction term. The correction term accounts for the random data surrounding a synchronization word. Numerical results show the performance gain of the proposed frame synchronizer over a correlation scheme.

  • Statistical Analysis of Quantization Noise in an End-to-End OFDM Link

    Maduranga LIYANAGE  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1376-1385

    Quantization is an important operation in digital communications systems. It not only introduces quantization noise but also changes the statistical properties of the quantized signal. Furthermore, quantization noise cannot be always considered as an additive source of Gaussian noise as it depends on the input signal probability density function. In orthogonal-frequency-division-multiplexing transmission the signal undergoes different operations which change its statistical properties. In this paper we analyze the statistical transformations of the signal from the transmitter to the receiver and determine how these effect the quantization. The discussed process considers the transceiver parameters and the channel properties to model the quantization noise. Simulation results show that the model agrees well with the simulated transmissions. The effect of system and channel properties on the quantization noise and its effect on bit-error-rate are shown. This enables the design of a quantizer with an optimal resolution for the required performance metrics.

  • A Simple and Speedy Routing with Reduced Resource Information in Large-Capacity Optical WDM Networks

    Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    884-893

    This paper discusses a simple and speedy routing method in large-capacity optical Wavelength Division Multiplexing (WDM) networks. The large-capacity WDM network is necessary to accommodate increasing traffic load in future. In this large-capacity WDM network, each link has many fibers and a huge amount of optical data can be transmitted through these fibers simultaneously. Optical path is configured for transmitting optical data by wavelength reservation including routing and wavelength assignment (RWA). Since traditional RWA methods have to treat much information about available wavelengths in each fiber, it is difficult to resolve RWA problem on time. In other words, the electrical processing becomes the bottleneck in the large-capacity WDM network. Therefore, a simple and speedy RWA method is necessary for the large-capacity WDM network. In this paper, we propose the simple and effective RWA method which considers reduced information as Network Map. The objective is to improve the network performance by using multiple fibers effectively. The complex processing is not suitable for data transmission because the switching operation must be done in very short time for one request. In addition to this, it is not practical to collect detailed network information frequently. The proposed wavelength assignment method assigns wavelength more uniformly than traditional method, and therefore, the proposed routing method can select routes without considering detailed information about each wavelength state. The proposed routing method needs only local information and reduced network information. This paper shows that the proposed routing method can get suitable solution for large-capacity optical WDM networks through computer simulations. The proposed RWA method drastically improves the loss probability against other simple RWA methods. This paper also describes two types of optical switches with tunable or fixed wavelength conversions. The wavelength converters with relatively low technology becomes effective with the proposed RWA method in the large-capacity WDM network. This paper reveals that complex routing methods are not necessary for large-capacity optical WDM networks.

  • A Resource Allocation Scheme for Multiuser MIMO/OFDM Systems with Spatial Grouping

    Chun-Ye LIN  Yung-Fang CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    1006-1015

    A resource allocation scheme for multi-access MIMO-OFDM systems in uplink was developed to improve power and spectrum efficiency in the frequency and the space domains [1]. The scheme requires a multi-user detector in the receiver and assumes identical spatial crosscorrelation across all subcarriers for any pair of spatially separable users. However, the multi-user detection device may not exist in the receiver and the identical spatial crosscorrelation assumption may not be valid in some operational scenarios. The paper develops a scheme to remedy these problems for multi-access MIMO-OFDM systems without using multi-user detection techniques and the assumption. The proposed scheme aims at minimizing the total user transmit power while satisfying the required data rate, the maximum transmit power constraint, and the bit error rate of each user. The simulation results are presented to demonstrate the efficacy of the proposed algorithm.

  • 100 Gb/s Ethernet Inverse Multiplexing Based on Aggregation at the Physical Layer

    Kenji HISADOME  Mitsuhiro TESHIMA  Yoshiaki YAMADA  Osamu ISHIDA  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    904-909

    We propose a packet-based inverse multiplexing method to allow scalable network access with a bigger-pipe physical interface. The method is based on aggregation at the physical layer (APL) that fragments an original packet-flow and distributes the fragments among an adequate numbers of physical links or networks. It allows us to share wavelengths and/or bandwidth resources in optical networks. Its technical feasibility at the speed of newly standardized 100 Gb/s Ethernet (100 GbE) is successfully evaluated by implementing the inverse multiplexing logic functions on a prototype board. We demonstrate super-high-definition video streaming and huge file transfer by transmitting 100 GbE MAC frames over multiple 10 GbE physical links via inverse multiplexing.

  • A Novel Multi-Service Multiplexing Scheme Based on STBC in TDS-OFDM System

    Wenting CHANG  Jintao WANG  Changyong PAN  Zhixing YANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:4
      Page(s):
    1118-1121

    In order to realize multi-service in TDS-OFDM system, a novel multiplexing scheme based on space time block code is proposed along with the corresponding demultiplexing method with low complexity. Simulations show the presented scheme can not only achieve full diversity gain, but also effectively improve the system capacity.

  • Blind Minimum Interference Symbol Synchronization for OFDM Systems in Long ISI Channels

    Wen-Long CHIN  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:4
      Page(s):
    1066-1069

    This letter introduces a blind minimum interference symbol synchronization for orthogonal frequency-division multiplexing (OFDM) systems based on the cyclic prefix (CP). The basic idea of our contribution is to obtain an estimate of the channel-tap powers from the correlation characteristics of the CP. Based on the estimate of the channel-tap powers, a minimum interference metric is proposed. The proposed algorithm has low complexity and can be used to cope with long inter-symbol-interference (ISI) channels with length up to twice the CP length.

  • A Differential Cross-Correlation Cell Search Algorithm for IEEE 802.16e OFDMA Systems

    Juinn-Horng DENG  Jeng-Kuang HWANG  Shu-Min LIAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    587-590

    A differential cross-correlation cell ID identification algorithm is proposed for IEEE 802.16e OFDMA cellular system. The cell ID represents the number of the preamble selected by the base station in downlink mode. First, we construct the downlink (DL) preamble structure and signal model with carrier frequency offset (CFO) and channel effects. Next, in order to achieve the initial synchronization, a differential receiver with cross correlation for all preamble patterns is proposed to search for cell ID. Simulation results confirm that the proposed structure is suitable for ITU fading channels and outperforms the conventional cell search system.

  • Single-Channel 1.28 Tbit/s-525 km DQPSK Transmission Using Ultrafast Time-Domain Optical Fourier Transformation and Nonlinear Optical Loop Mirror

    Pengyu GUAN  Hans Christian Hansen MULVAD  Yutaro TOMIYAMA  Toshiyuki HIRANO  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    430-436

    We demonstrate a single-channel 1.28 Tbit/s-525 km transmission using OTDM of subpicosecond DQPSK signals. In order to cope with transmission impairments due to time-varying higher-order PMD, which is one of the major limiting factors in such a long-haul ultrahigh-speed transmission, we newly developed an ultrafast time-domain optical Fourier transformation technique in a round-trip configuration. By applying this technique to subpicosecond pulses, transmission impairments were greatly reduced, and BER performance below FEC limit was obtained with increased system margin.

121-140hit(419hit)