The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] organic light emitting diode(12hit)

1-12hit
  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • Surface Potential Measurement of Organic Multi-layered Films on Electrodes by Kelvin Probe Force Microscopy

    Nobuo SATOH  Shigetaka KATORI  Kei KOBAYASHI  Kazumi MATSUSHIGE  Hirofumi YAMADA  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    91-97

    We have investigated both the film thickness and surface potential of organic semiconductors deposited on two kinds of electrodes by the simultaneous observation with the dynamic force microscopy (DFM)/Kelvin-probe force microscope (KFM). To clarify the interfacial properties of organic semiconductor, we fabricated samples that imitated the organic light emitting diode (OLED) structure by depositing bis [$N,N '$-(1-naphthyl)-$N,N '$-phenyl] benzidine ($alpha$-NPD) and tris (8-hydroxyquinolinato) aluminum (Alq$_{3}$), respectively, on indium-tin-oxide (ITO) as anode and aluminum (Al) as cathode by the vacuum evaporation deposition using intersecting metal shadow masks. This deposition technique enables us to fabricate four different areas in the same substrate. The crossover area of the deposited thin films were measured by the DFM/KFM, the energy band diagrams were depicted and we considered that the charge behavior of the organic semiconductor depended on the material and the structure.

  • Novel Field Emission Organic Light Emitting Diodes

    Meiso YOKOYAMA  Chi-Shing LI  Shui-Hsiang SU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:3
      Page(s):
    307-311

    This work presents a novel field emission organic light emitting diode (FEOLED), in which an inorganic phosphor thin film is replaced by an organic EL light-emitting layer in the configuration of a field emission display (FED). The field emission electrons emitted from the carbon nanotubes (CNTs) cathode of the proposed FEOLED intensify the electron density in the multi-layer organic materials of the OLED; thus, resulting a higher luminous efficiency than that of a conventional OLED. Additionally, the luminance of the proposed FEOLED can be further increased from 10,820 cd/m2 to 27,393 cd/m2 by raising the current density of OLED through an external electron source. A balanced quantity of electrons and holes in the OLED, which is achieved by the proposed FEOLED increases the number of excitons and attributes the enhancement of luminous efficiency of the OLED. Under the same operating current density, the proposed FEOLED exhibits a higher luminous efficiency than that of a conventional OLED.

  • Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    Ching-Lin FAN  Yu-Sheng LIN  Yan-Wei LIU  

     
    LETTER-Electronic Displays

      Vol:
    E93-C No:5
      Page(s):
    712-714

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth = 0.33 V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO = +0.33 V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  • Integration of Multiple Organic Light Emitting Diodes and a Lens for Emission Angle Control

    Fanny RAHADIAN  Tatsuya MASADA  Ichiro FUJIEDA  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1536-1541

    We propose to integrate a single lens on top of multiple OLEDs. Angular distribution of the light emitted from the lens surface is altered by turning on the OLEDs selectively. We can use such a light source as a backlight for a liquid crystal display to switch its viewing angle range and/or to display multiple images in different directions. Pixel-level integration would allow one to construct an OLED display with a similar emission angle control.

  • Temperature Dependence of Photoluminescence Decay Time of Ir(ppy)3

    Taiju TSUBOI  Nadeer ALJAROUDI  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2028-2032

    Theoretical calculation has been done on the decay time of photoluminescence of Ir(ppy)3 dissolved in tetrahydrofuran and its temperature dependence at 1.2-300 K. Taking into account that the emitting triplet state consists of three zero-field splitting substates and taking into account one-phonon non-radiative transitions among these substates, the rate equations for the populations of these substates have been obtained. Three decay components are derived by solving not only the secular equation but also the rate equations, where the slow decay time shows decrease from 145 to 2 µs with increasing temperature from 1.2 to 300 K. A good agreement has been obtained for the temperature dependence between the calculated slow decay time and the observed one.

  • Spectroscopic Ellipsometry Study of Organic Light Emitting Diode Based on Phosphorescent PtOEP

    Taiju TSUBOI  Yoko WASAI  Nataliya NABATOVA-GABAIN  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2039-2044

    We have determined the thickness and optical constants (refractive index and extinction coefficient) of each layer in the multi-layer organic light emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) using a phase modulated spectroscopic ellipsometer. The thickness of each layer estimated from the ellipsometric measurement is different from the thickness measured with quartz oscillator during the evaporation of organic materials. The deviation of total multi-layer thickness is about 5%, while the deviation in each of N, N'-bis(1-naphtyl)-N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) and aluminum tris 8-hydroxyquinoline (Alq3) layers is about 20-25%. Additionally the spectra of refractive index and extinction coefficient of Alq3 and α-NPD layers are different from those that are measured using the single layer films. These results are understood by penetration of organic material from the neighboring layers in the multi-layer structure devices.

  • Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous Model

    Takuya OGAWA  Don-Chan CHO  Kazue KANEKO  Tatsuo MORI  Teruyoshi MIZUTANI  

     
    PAPER-Electronic Devices

      Vol:
    E85-C No:6
      Page(s):
    1239-1244

    We proposed the conduction mechanism of organic light-emitting diode (OLED) using a one-dimensional discontinuous model. We assumed that each emitting molecule corresponds to a hopping site according to the actual charge transfer between adjacent molecules. Both carrier mobility of Alq3 and barrier heights for each carrier were derived from experimental data. We calculate transient behavior of carrier, field, and exciton distribution. Both carrier injections assumed the Schottky injection. In the previous results, when we assumed that calculated current density fit the experimental one in the current density field curve, calculated light-emission intensity did not fit the experimental one in the light-emission field curve. Furthermore, the slope of the calculated light emission-field curve is too small to fit the experimental one. In the previous study, hopping distance was assumed to be 1 nm. In this study, it is assumed to be 1.7 nm. We consider that field dependence of electron injection is too weak to explain only the Schottky emission. When the electron injection is assumed to be both Schottky emission and Fowler-Nordheim emission calculated light-emission field as well as the current-density field curves were fit to the curve of each experimental characteristics.

  • Electrical and Emitting Properties of Organic Electroluminescent Diodes with Nanostructured Cathode Buffer-Layers of Al/Alq3 Ultrathin Films

    Kazunari SHINBO  Eigo SAKAI  Futao KANEKO  Keizo KATO  Takahiro KAWAKAMI  Toyoyasu TADOKORO  Shinichi OHTA  Rigoberto C. ADVINCULA  

     
    PAPER-Electronic Devices

      Vol:
    E85-C No:6
      Page(s):
    1233-1238

    Organic light emitting diodes (OLEDs) containing nanostructured cathode buffer layers were fabricated, and their electrical and emitting properties were investigated. The OLEDs have an ITO anode/CuPc/TPD/Alq3/buffer layer/Al cathode structure with the buffer layers made from nanostructured alternating layers Alq3 and Al. The driving voltage and the efficiency of the devices were improved by insertion of the buffer layer. It was estimated that some modulations of the Schottky barrier at the Alq3 and the Al cathode interface were induced due to the insertion of the buffer layer and it caused an enhancement of electron injection from the Al cathode.

  • Enhanced Electroluminescence in Organic Light-Emitting Diodes Utilizing Co-doped Emissive Layer for Red Light Emission

    Takumi SAWATANI  Yutaka OHMORI  Katsumi YOSHINO  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1022-1025

    We demonstrate unique dye-doping method to realize organic light emitting diodes (OLED) with high efficiency, high brightness and pure red emission. In this study, we used 5,10,15,20 tetraphenyl -21H,23H-porphine (TPP) as emitting dopant into 8-hydroxyquinoline aluminum (Alq3) emissive layer. To improve turn-on voltage and emission characteristics, a sufficient amount of 4-(dicyano methylene) -2-methyl -6-(p-dimethyl aminostyryl) -4H-pyran (DCM) was added to the TPP doped Alq3 emissive layer. The mechanisms and the emission characteristics of the co-doped EL device are discussed using energy band diagram of the materials used in the device.

  • Multicolor Organic Light Emitting Diodes with RGB Emission

    Yutaka OHMORI  Norio TADA  Yoshitaka KUROSAKA  Hiroshi UETA  Takumi SAWATANI  Akihiko FUJII  Katsumi YOSHINO  

     
    PAPER

      Vol:
    E81-C No:7
      Page(s):
    1041-1044

    Multicolor light emitting diodes (LEDs) which emit red (R), green (G) and blue (B) light have been realized by stacking a two-color emission part on a single-color emission part. The former part consists of two emissive layers of red and blue light, which can be selected by changing the polarity of applied field. The latter part consists of a single-color emission part which emits green light. The emission from the diode in the whole visible spectral range can be modulated by the combination of applying various voltages to the two-color and to the single-color emission parts, separately.

  • Recent Progress in Organic Film Devices for Optics and Electronics

    Keiichi KANETO  Kazuhiro KUDO  Yutaka OHMORI  Mitsuyoshi ONODA  Mitsumasa IWAMOTO  

     
    REVIEW PAPER

      Vol:
    E81-C No:7
      Page(s):
    1009-1019

    Recent technologies of organic film devices are reviewed. New technologies of fabrication and characterization of organic thin films, electro-mechanical conversion materials, and applications for electrical and optical devices are discussed. In this review paper, especially organic light emitting diodes, tunneling junctions using polyimide Langmuir-Blodgett films, tunneling spectroscopy and high-density recording, plastic actuators using conducting polymers, molecular self-assembly process for fabricating organic thin film devices are reviewed.