The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] plasma-polymerized film(7hit)

1-7hit
  • Amperometric Biosensor with Composites of Carbon Nanotube, Hexaamineruthenium(III)chloride, and Plasma-Polymerized Film

    Tatsuya HOSHINO  Takahiro INOUE  Hitoshi MUGURUMA  

     
    PAPER-Organic Molecular Electronics

      Vol:
    E96-C No:12
      Page(s):
    1536-1540

    A novel fabrication approach for the amperometric biosensor composed of carbon nanotubes (CNT), a plasma-polymerized film (PPF), hexamineruthenium(III)chloride (RU), and enzyme glucose oxidase (GOD) is reported. The configuration of the electrochemical electrode is multilayer films which contain sputtered gold, lower acetonitrile PPF, CNT, RU, GOD, and upper acetonitrile PPF, sequentially. First, PPF deposited on Au acts as a permselective membrane and as a scaffold for CNT layer formation. Second, PPF directly deposited on GOD acts as a matrix for enzyme immobilization. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with nitrogen plasma. The electron transfer mediator RU play a role as the mediator, in which the electron caused by enzymatic reaction transports to the electrode. The synergy between the electron transfer mediator and CNT provides benefits in terms of lowering the operational potential and enhancing the sensitivity (current). The optimized glucose biosensor revealed a sensitivity of 3.4µA mM-1 cm-2 at +0.4V vs. Ag/AgCl, linear dynamic range of 2.5-19mM, and a response time of 6s.

  • NADH Sensing Using Neutral Red Functionalized Carbon Nanotube/Plasma-Polymerized Film Composite Electrode

    Tatsuya HOSHINO  Hitoshi MUGURUMA  

     
    BRIEF PAPER-Organic Molecular Electronics

      Vol:
    E95-C No:7
      Page(s):
    1300-1303

    A novel fabrication approach for electrochemical sensing of nicotinamide adenine dinucleotide (NADH) using neutral red (NR) functinalized carbon nanotube/plasma-polymerized film composite electrode is reported. The configuration of sensing electrode was NR-functionalized CNTs sandwiched between two acetonitrile PPFs on sputtered gold thin film. The NR as an electron transfer mediator shuttles the electron from the CNT to gold electrode. Due to the synergistic effect between NR and CNT, the resulting electrode showed the lower detection potential and the larger sensitivity (current) than that of NR or CNT alone. The sensor revealed a sensitivity of 29 µA mM-1 cm-2 at +0.15 V vs. Ag/AgCl, linear dynamic range of 0.08–4.2 mM, a detection limit of 18 µM at S/N=3, and a response time of 7 s.

  • Plasma Polymerization for Protein Patterning: Reversible Formation with Fullerene Modification

    Hayato TAKAHASHI  Naoya MURATA  Hitoshi MUGURUMA  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E93-C No:2
      Page(s):
    211-213

    Partial plasma polymerization for coexistence of hydrophobic/hydrophilic area in several ten micrometer size is the typical technique for protein patterning. A hydrophobic hexamethyldisiloxane plasma-polymerized film (HMDS PPF) was deposited on a glass substrate and this surface was partially modified by subsequent nitrogen plasma treatment (hydrophilic surface, HMDS-N PPF) with a patterned shadow mask. An antibody protein (F(ab')2 fragment of anti-human immunoglobulin G) was selectively adsorbed onto the HMDS-N area and was not adsorbed onto the HMDS area. Distinct 8080 µm2 square spots surrounded by a non-protein adsorbed 80 µm-wide grid were observed. Then, when the protein modified by fullerene was used, the reversible patterning was obtained. This indicated that the modification by fullerene changed the hydrophilic nature of F(ab')2 protein to hydrophobic one, as a result, the modified protein was selectively adsorbed onto hydrophobic area.

  • Selective Adsorption of an Antibody onto a Plasma-Polymerized Film for Protein Patterning

    Atsunori HIRATSUKA  Naoya MURATA  Hitoshi MUGURUMA  Kazunari MATSUMURA  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E91-C No:6
      Page(s):
    978-980

    Techniques for patterned modification of substrate surfaces are important for forming microarrays on protein chips. A hexamethyldisiloxane plasma-polymerized film (HMDS PPF) was deposited on a glass substrate and the resulting surface was partially modified by subsequent nitrogen plasma treatment with a patterned shadow mask. When surface adsorption of an antibody protein (F(ab')2 fragment of anti-human immunoglobulin G) was visualized by fluorescence microscopy, distinct 8080 µm2 square spots were observed, surrounded by a non-fluorescent 80 µm-wide grid. This pattern could be attributed to proteins selectively adsorbed onto the nitrogen plasma-treated regions but not onto the surface of pristine HMDS PPF. This provided a simple fabrication method of protein patterning.

  • Quantitative Characterization of Surface Amino Groups of Plasma-Polymerized Films Prepared from Nitrogen-Containing Monomers for Bioelectronic Applications

    Hitoshi MUGURUMA  

     
    PAPER-Organic Molecular Electronics

      Vol:
    E91-C No:6
      Page(s):
    963-967

    The surface amino groups of plasma-polymerized films prepared from various nitrogen-containing monomers were quantitatively characterized for bioelectronic and biomedical applications. X-ray photoelectron spectroscopy (XPS) measurements were conducted on two kinds of surfaces: pristine surfaces of plasma-polymerized film prepared using various nitrogen-containing monomers, and theirs surfaces whose amino groups had been derivatized by a primary-amine-selective reagent carrying an XPS label. The XPS data showed that the maximum surface density of amino groups for this film was 8.41013 cm-2. Amino groups constituted 14-64% of all surface nitrogen atoms (NH/N), depending on the monomer used.

  • Adsorption of Antibody Protein onto Plasma-Polymerized Film Characterized by Atomic Force Microscopy and Quartz Crystal Microbalance

    Hitoshi MUGURUMA  Satoshi MIURA  Naoya MURATA  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E90-C No:3
      Page(s):
    649-651

    Adsorption of antibody protein (anti-human IgG) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PPF surface is very flat (less than 1 nm roughness) and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focus on two types of surfaces: one is the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic) and the other is an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface). The AFM image showed that the antibody molecules were densely adsorbed onto both surfaces and individual antibody molecules could be observed. The QCM profiles show a corresponding tendency with the AFM images. These results indicate that the plasma polymerized film can be the suitable biointerface for the application of biosensor and bioassay.

  • A Thin-Film Glucose Biosensor Based on Hexamethyldisiloxane Plasma-Polymerized Film: Influence of Its Film Thickness on the Platinum Electrode

    Yoshihiro KASE  Hitoshi MUGURUMA  Atsunori HIRATSUKA  Isao KARUBE  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    142-147

    An amperometric thin-film glucose biosensor based on a plasma-polymerized film using hexamethyldisiloxane as the monomer is presented. The plasma-polymerized film, achieved in plasma in the vapor phase, offers a new alternative for use in the design of the electrode-enzyme interface of biosensors. The film shows promise of high sensor performance; namely, rapid sensor response, low noise, a wide dynamic range, reproducibility, and reduction in the effects of interfering materials such as ascorbic acid. In this study, we examined the usefulness of the hexamethyldisiloxane plasma-polymerized film and investigated how the thickness of the plasma-polymerized film on a platinum electrode affected sensor characteristics: the selectivity for hydrogen peroxide versus interfering agents, the sensor response due to enzymatic reaction, and oxygen depletion.