The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] pointing(44hit)

1-20hit(44hit)

  • Enhanced Sender-Based Message Logging for Reducing Forced Checkpointing Overhead in Distributed Systems

    Jinho AHN  

     
    LETTER-Dependable Computing

      Pubricized:
    2021/06/08
      Vol:
    E104-D No:9
      Page(s):
    1500-1505

    The previous communication-induced checkpointing may considerably induce worthless forced checkpoints because each process receiving messages cannot obtain sufficient information related to non-causal Z-paths. This paper presents an enhanced sender-based message logging protocol applicable to any communication-induced checkpointing to lead to a high decrease of the forced checkpointing overhead of communication-induced checkpointing in an effective way while permitting no useless checkpoint. The protocol allows each process sending a message to know the exact timestamp of the receiver of the message in its logging procedures without any extra message. Simulation verifies their great efficiency of overhead alleviation regardless of communication patterns.

  • A Comparison Study on Camera-Based Pointing Techniques for Handheld Displays Open Access

    Liang CHEN  Dongyi CHEN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2020/08/04
      Vol:
    E104-C No:2
      Page(s):
    73-80

    Input devices based on direct touch have replaced traditional ones and become the mainstream interactive technology for handheld devices. Although direct touch interaction proves to be easy to use, its problems, e.g. the occlusion problem and the fat finger problem, lower user experience. Camera-based mobile interaction is one of the solutions to overcome the problems. There are two typical interaction styles to generate camera-based pointing interaction for handheld devices: move the device or move an object before the camera. In the first interaction style, there are two approaches to move a cursor's position across the handheld display: move it towards the same direction or the opposite direction which the device moves to. In this paper, the results of a comparison research, which compared the pointing performances of three camera-based pointing techniques, are presented. All pointing techniques utilized input from the rear-facing camera. The results indicate that the interaction style of moving a finger before the camera outperforms the other one in efficiency, accuracy, and throughput. The results also indicate that within the interaction style of moving the device, the cursor positioning style of moving the cursor to the opposite direction is slightly better than the other one in efficiency and throughput. Based on the findings, we suggest giving priority to the interaction style of moving a finger when deploying camera-based pointing techniques on handheld devices. Given that the interaction style of moving the device supports one-handed manipulation, it also worth deploying when one-handed interaction is needed. According to the results, the cursor positioning style of moving the cursor towards the opposite direction which the device moves to may be a better choice.

  • Non-Linear Distance Filter for Modeling Effect of a Large Pointer Used in a Gesture-Based Pointing Interface

    Kazuaki KONDO  Takuto FUJIWARA  Yuichi NAKAMURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/08/03
      Vol:
    E103-D No:11
      Page(s):
    2302-2313

    When using a gesture-based interface for pointing to targets on a wide screen, displaying a large pointer instead of a typical spot pattern reduces disturbance caused by measurement errors of user's pointing posture. However, it remains unclear why a large pointer helps facilitate easy pointing. To examine this issue, in this study we propose a mathematical model that formulates human pointing motions affected by a large pointer. Our idea is to describe the effect of the large pointer as human visual perception, because the user will perceive the pointer-target distance as being shorter than it actually is. We embedded this scheme, referred to as non-linear distance filter (NDF), into a typical feedback loop model designed to formulate human pointing motions. We also proposed a method to estimate NDF mapping from pointing trajectories, and used it to investigate the applicability of the model under three typical disturbance patterns: small vibration, smooth shift, and step signal. Experimental results demonstrated that the proposed NDF-based model could accurately reproduced actual pointing trajectories, achieving high similarity values of 0.89, 0.97, and 0.91 for the three respective disturbance patterns. The results indicate the applicability of the proposed method. In addition, we confirmed that the obtained NDF mappings suggested rationales for why a large pointer helps facilitate easy pointing.

  • Optimal Rejuvenation Policies for Non-Markovian Availability Models with Aperiodic Checkpointing

    Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/07/16
      Vol:
    E103-D No:10
      Page(s):
    2133-2142

    In this paper, we present non-Markovian availability models for capturing the dynamics of system behavior of an operational software system that undergoes aperiodic time-based software rejuvenation and checkpointing. Two availability models with rejuvenation are considered taking account of the procedure after the completion of rollback recovery operation. We further proceed to investigate whether there exists the optimal rejuvenation schedule that maximizes the steady-state system availability, which is derived by means of the phase expansion technique, since the resulting models are not the trivial stochastic models such as semi-Markov process and Markov regenerative process, so that it is hard to solve them by using the common approaches like Laplace-Stieltjes transform and embedded Markov chain techniques. The numerical experiments are conducted to determine the optimal rejuvenation trigger timing maximizing the steady-state system availability for each availability model, and to compare both two models.

  • Improving Pointing Direction Estimation by Considering Hand- and Ocular-Dominance

    Tomohiro MASHITA  Koichi SHINTANI  Kiyoshi KIYOKAWA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/07/20
      Vol:
    E103-D No:10
      Page(s):
    2168-2177

    This paper introduces a user study regarding the effects of hand- and ocular-dominances to pointing gestures. The result of this study is applicable for designing new gesture interfaces which are close to a user's cognition, intuitive, and easy to use. The user study investigates the relationship between the participant's dominances and pointing gestures. Four participant groups—right-handed right-eye dominant, right-handed left-eye dominant, left-handed right-eye dominant and left-handed left-eye dominant—were prepared, and participants were asked to point at the targets on a screen by their left and right hands. The pointing errors among the different participant groups are calculated and compared. The result of this user study shows that using dominant eyes produces better results than using non-dominant eyes and the accuracy increases when the targets are located at the same side of dominant eye. Based on these interesting properties, a method to find the dominant eye for pointing gestures is proposed. This method can find the dominant eye of an individual with more than 90% accuracy.

  • A Comparison Study on Front- and Back-of-Device Touch Input for Handheld Displays

    Liang CHEN  Dongyi CHEN  Xiao CHEN  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    880-883

    Touch screen has become the mainstream manipulation technique on handheld devices. However, its innate limitations, e.g. the occlusion problem and fat finger problem, lower user experience in many use scenarios on handheld displays. Back-of-device interaction, which makes use of input units on the rear of a device for interaction, is one of the most promising approaches to address the above problems. In this paper, we present the findings of a user study in which we explored users' pointing performances in using two types of touch input on handheld devices. The results indicate that front-of-device touch input is averagely about two times as fast as back-of-device touch input but with higher error rates especially in acquiring the narrower targets. Based on the results of our study, we argue that in the premise of keeping the functionalities and layouts of current mainstream user interfaces back-of-device touch input should be treated as a supplement to front-of-device touch input rather than a replacement.

  • Feedback Control Model of a Gesture-Based Pointing Interface for a Large Display

    Kazuaki KONDO  Genki MIZUNO  Yuichi NAKAMURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/04/04
      Vol:
    E101-D No:7
      Page(s):
    1894-1905

    This study proposes a mathematical model of a gesture-based pointing interface system for simulating pointing behaviors in various situations. We assume an interaction between a pointing interface and a user as a human-in-the-loop system and describe it using feedback control theory. The model is formulated as a hybrid of a target value follow-up component and a disturbance compensation one. These are induced from the same feedback loop but with different parameter sets to describe human pointing characteristics well. The two optimal parameter sets were determined individually to represent actual pointing behaviors accurately for step input signals and random walk disturbance sequences, respectively. The calibrated model is used to simulate pointing behaviors for arbitrary input signals expected in practical situations. Through experimental evaluations, we quantitatively analyzed the performance of the proposed hybrid model regarding how accurately it can simulate actual pointing behaviors and also discuss the advantage regarding the basic non-hybrid model. Model refinements for further accuracy are also suggested based on the evaluation results.

  • A Tree-Based Checkpointing Architecture for the Dependability of FPGA Computing

    Hoang-Gia VU  Shinya TAKAMAEDA-YAMAZAKI  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    288-302

    Modern FPGAs have been integrated in computing systems as accelerators for long running applications. This integration puts more pressure on the fault tolerance of computing systems, and the requirement for dependability becomes essential. As in the case of CPU-based system, checkpoint/restart techniques are also expected to improve the dependability of FPGA-based computing. Three issues arise in this situation: how to checkpoint and restart FPGAs, how well this checkpoint/restart model works with the checkpoint/restart model of the whole computing system, and how to build the model by a software tool. In this paper, we first present a new checkpoint/restart architecture along with a checkpointing mechanism on FPGAs. We then propose a method to capture consistent snapshots of FPGA and the rest of the computing system. Third, we provide “fine-grained” management for checkpointing to reduce performance degradation. For the host CPU, we also provide a stack which includes API functions to manage checkpoint/restart procedures on FPGAs. Fourth, we present a Python-based tool to insert checkpointing infrastructure. Experimental results show that the checkpointing architecture causes less than 10% maximum clock frequency degradation, low checkpointing latencies, small memory footprints, and small increases in power consumption, while the LUT overhead varies from 17.98% (Dijkstra) to 160.67% (Matrix Multiplication).

  • Energy-Performance Modeling of Speculative Checkpointing for Exascale Systems

    Muhammad ALFIAN AMRIZAL  Atsuya UNO  Yukinori SATO  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER-High performance computing

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2749-2760

    Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.

  • Linear Programming Phase Feeding Method for Phased-Array Scanning

    Yi ZHANG  Guoqiang ZHAO  Houjun SUN  Mang HE  Qiang CHEN  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E99-C No:7
      Page(s):
    892-894

    Digital phase shifters are widely used to achieve space scanning in phased array antenna, and beam pointing accuracy depends on the bit number and resolution of the digital phase shifter. This paper proposes a novel phase feeding method to reduce the phase quantization error effects. A linear formula for the beam pointing deviation of a linear uniform array in condition of phase quantization error is derived, and the linear programming algorithm is introduced to achieve the minimum beam pointing deviation. Simulations are based on the pattern of the phased array, which gives each element a certain quantization phase error to find the beam pointing deviation. The novel method is then compared with previous methods. Examples show that a 32-element uniform linear array with 5-bit phase shifters using the proposed method can achieve a higher beam-steering accuracy than the same array with 11-bit phase shifters.

  • A Scalable Communication-Induced Checkpointing Algorithm for Distributed Systems

    Alberto CALIXTO SIMON  Saul E. POMARES HERNANDEZ  Jose Roberto PEREZ CRUZ  Pilar GOMEZ-GIL  Khalil DRIRA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:4
      Page(s):
    886-896

    Communication-induced checkpointing (CIC) has two main advantages: first, it allows processes in a distributed computation to take asynchronous checkpoints, and secondly, it avoids the domino effect. To achieve these, CIC algorithms piggyback information on the application messages and take forced local checkpoints when they recognize potentially dangerous patterns. The main disadvantages of CIC algorithms are the amount of overhead per message and the induced storage overhead. In this paper we present a communication-induced checkpointing algorithm called Scalable Fully-Informed (S-FI) that attacks the problem of message overhead. For this, our algorithm modifies the Fully-Informed algorithm by integrating it with the immediate dependency principle. The S-FI algorithm was simulated and the result shows that the algorithm is scalable since the message overhead presents an under-linear growth as the number of processes and/or the message density increase.

  • Checkpoint Time Arrangement Rotation in Hybrid State Saving with a Limited Number of Periodical Checkpoints

    Ryo SUZUKI  Mamoru OHARA  Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    LETTER-Dependable Computing

      Vol:
    E96-D No:1
      Page(s):
    141-145

    This paper discusses hybrid state saving for applications in which processes should create checkpoints at constant intervals and can hold a finite number of checkpoints. We propose a reclamation technique for checkpoint space, that provides effective checkpoint time arrangements for a rollback distance distribution. Numerical examples show that when we cannot use the optimal checkpoint interval due to the system requirements, the proposed technique can achieve lower expected overhead compared to the conventional technique without considering the form of the rollback distance distribution.

  • WBC-ALC: A Weak Blocking Coordinated Application-Level Checkpointing for MPI Programs

    Xinhai XU  Xuejun YANG  Yufei LIN  

     
    PAPER-Computer System

      Vol:
    E95-D No:3
      Page(s):
    786-796

    As supercomputers increase in size, the mean time between failures (MTBF) of a system becomes shorter, and the reliability problem of supercomputers becomes more and more serious. MPI is currently the de facto standard used to build high-performance applications, and researches on the fault tolerance methods of MPI are always hot topics. However, due to the characteristics of MPI programs, most current checkpointing methods for MPI programs need to modify the MPI library (even operating system), or implement a complicated protocol by logging lots of messages. In this paper, we carry forward the idea of Application-Level Checkpointing (ALC). Based on the general fact that programmers are familiar with the communication characteristics of applications, we have developed BC-ALC, a new portable blocking coordinated ALC for MPI programs. BC-ALC neither modifies the MPI library (even operating system) nor logs any message. It implements coordination only by the Barrier operations instead of any complicated protocol. Furthermore, in order to reduce the cost of fault-tolerance, we reduce the synchronization range of the barrier, and design WBC-ALC, a weak blocking coordinated ALC utilizing group synchronization instead of global synchronization based on the communication relationship between processes. We also propose a fault-tolerance framework developed on top of WBC-ALC and discuss an implementation of it. Experimental results on NPB3.3-MPI benchmarks validate BC-ALC and WBC-ALC, and show that compared with BC-ALC, the average coordination time and the average backup time of a single checkpoint in WBC-ALC are reduced by 44.5% and 5.7% respectively.

  • Lightweight Consistent Recovery Algorithm for Sender-Based Message Logging in Distributed Systems

    Jinho AHN  

     
    LETTER-Dependable Computing

      Vol:
    E94-D No:8
      Page(s):
    1712-1715

    Sender-based message logging (SBML) with checkpointing has its well-known beneficial feature, lowering highly failure-free overhead of synchronous logging with volatile logging at sender's memory. This feature encourages it to be applied into many distributed systems as a low-cost transparent rollback recovery technique. However, the original SBML recovery algorithm may no longer be progressing in some transient communication error cases. This paper proposes a consistent recovery algorithm to solve this problem by piggybacking small log information for unstable messages received on each acknowledgement message for returning the receive sequence number assigned to a message by its receiver. Our algorithm also enables all messages scheduled to be sent, but delayed because of some preceding unstable messages to be actually transmitted out much earlier than the existing ones.

  • Real-World Oriented Mobile Constellation Learning Environment Using Gaze Pointing

    Masato SOGA  Masahito OHAMA  Yosikazu EHARA  Masafumi MIWA  

     
    PAPER

      Vol:
    E94-D No:4
      Page(s):
    763-771

    We developed a real-world oriented mobile constellation learning environment. Learners point at a target constellation by gazing through a cylinder with a gyro-sensor under the real starry sky. The system can display information related to the constellation. The system has original exercise functions which are not supported by existing systems or products by other research group or companies. Through experimentation, we evaluated the learning environment to assess its learning effects.

  • Robust ESB Beamforming with DD Correction

    Ann-Chen CHANG  Jhih-Chung CHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:3
      Page(s):
    841-843

    This letter deals with eigenspace-based (ESB) beamforming based on the decision-directed (DD) correction with robust capability. It has been shown that the output of the ESB beamformer includes the desired signal and noise under small pointing errors. In conjugation with DD and soft decision decoding scheme, the proposed approach can be used to form a robust DD-ESB beamformer without any specific training sequence. Computer simulations are provided to illustrate the effectiveness of the proposed beamformer.

  • Calibrating Coordinates of a Tabletop Display with a Reflex in Eye-Hand Coordination

    Makio ISHIHARA  Yukio ISHIHARA  

     
    LETTER-Human-computer Interaction

      Vol:
    E93-D No:10
      Page(s):
    2862-2865

    This manuscript introduces a pointing interface for a tabletop display with a reflex in eye-hand coordination. The reflex is a natural response to inconsistency between kinetic information of a mouse and visual feedback of the mouse cursor. The reflex yields information on which side the user sees the screen from, so that the screen coordinates are aligned with the user's position.

  • Robust Capon Beamforming Using Pseudo-Interference Techniques

    Yi CHU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:5
      Page(s):
    1326-1329

    This paper presents a new approach for the Capon beamformer to provide robustness against array pointing errors. This robustness is achieved by incorporating an uncertainty constraint with diagonal loading and injected pseudo-interference. A simple performance analysis of this new beamformer is also investigated. Simulation results demonstrate that the power estimator has excellent performance.

  • Agent Based Fault Tolerance for the Mobile Environment

    Taesoon PARK  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E93-A No:4
      Page(s):
    846-849

    This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.

  • A Robust Eigenanalysis Interference Canceller for CDMA Signals

    Ann-Chen CHANG  Shiaw-Wu CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2516-2519

    This letter deals with robust interference suppression based on eigenanalysis interference canceller (EIC) with the joint code-aid and noise subspace-based correcting approach. It has been shown that the EIC is very sensitive to pointing error, especially when the interference number is overestimated. Based on the corrected steering angle, a proper blocking matrix of the EIC can be obtained to suppress the leakage of desired signal. Therefore, desired signal cancellation does not occur; even if the interference number is overestimated in constructing the interference subspace. Several computer simulations are provided to demonstrate the effectiveness of the proposed approach.

1-20hit(44hit)