The search functionality is under construction.

Keyword Search Result

[Keyword] quantum computation(11hit)

1-11hit
  • Development of Quantum Annealer Using Josephson Parametric Oscillators Open Access

    Tomohiro YAMAJI  Masayuki SHIRANE  Tsuyoshi YAMAMOTO  

     
    INVITED PAPER

      Pubricized:
    2021/12/03
      Vol:
    E105-C No:6
      Page(s):
    283-289

    A Josephson parametric oscillator (JPO) is an interesting system from the viewpoint of quantum optics because it has two stable self-oscillating states and can deterministically generate quantum cat states. A theoretical proposal has been made to operate a network of multiple JPOs as a quantum annealer, which can solve adiabatically combinatorial optimization problems at high speed. Proof-of-concept experiments have been actively conducted for application to quantum computations. This article provides a review of the mechanism of JPOs and their application as a quantum annealer.

  • Learning Rule for a Quantum Neural Network Inspired by Hebbian Learning

    Yoshihiro OSAKABE  Shigeo SATO  Hisanao AKIMA  Mitsunaga KINJO  Masao SAKURABA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/10/30
      Vol:
    E104-D No:2
      Page(s):
    237-245

    Utilizing the enormous potential of quantum computers requires new and practical quantum algorithms. Motivated by the success of machine learning, we investigate the fusion of neural and quantum computing, and propose a learning method for a quantum neural network inspired by the Hebb rule. Based on an analogy between neuron-neuron interactions and qubit-qubit interactions, the proposed quantum learning rule successfully changes the coupling strengths between qubits according to training data. To evaluate the effectiveness and practical use of the method, we apply it to the memorization process of a neuro-inspired quantum associative memory model. Our numerical simulation results indicate that the proposed quantum versions of the Hebb and anti-Hebb rules improve the learning performance. Furthermore, we confirm that the probability of retrieving a target pattern from multiple learned patterns is sufficiently high.

  • Compaction of Topological Quantum Circuits by Modularization

    Kota ASAI  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E102-A No:4
      Page(s):
    624-632

    A topological quantum circuit is a representation model for topological quantum computation, which attracts much attention recently as a promising fault-tolerant quantum computation model by using 3D cluster states. A topological quantum circuit can be considered as a set of “loops,” and we can transform the topology of loops without changing the functionality of the circuit if the transformation satisfies certain conditions. Thus, there have been proposed many researches to optimize topological quantum circuits by transforming the topology. There are two directions of research to optimize topological quantum circuits. The first group of research considers so-called a placement and wiring problem where we consider how to place “parts” in a 3D space which corresponds to already optimized sub-circuits. The second group of research focuses on how to optimize the structure and locations of loops in a relatively small circuit which is treated as one part in the above-mentioned first group of research. This paper proposes a new idea for the second group of research; our idea is to consider topological transformations as a placement and wiring problem for modules which we derive from the information how loops are crossed. By using such a formulation, we can use the techniques for placement and wiring problems, and successfully obtain an optimized solution. We confirm by our experiment that our method indeed can reduce the cost much more than the method by Paetznick and Fowler.

  • Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:1
      Page(s):
    1-8

    In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input with positive probability and rejects an incorrect input with probability 1. In this work we relate strong quantum nondeterministic multiparty communication complexity to the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In particular, by extending the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), we show that for any boolean function f when there is no prior shared entanglement between the players, 1) in the Number-On-Forehead model the cost is upper-bounded by the logarithm of nrank(f); 2) in the Number-In-Hand model the cost is lower-bounded by the logarithm of nrank(f). Furthermore, we show that when the number of players is o(log log n), we have NQP BQP for Number-On-Forehead communication.

  • Quantum Walks on the Line with Phase Parameters

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    722-730

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  • A Simple Procedure for Classical Signal-Processing in Cluster-State Quantum Computation

    Kazuto OSHIMA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:5
      Page(s):
    1291-1293

    We exhibit a simple procedure to find how classical signals should be processed in cluster-state quantum computation. Using stabilizers characterizing a cluster state, we can easily find a precise classical signal-flow that is required in performing cluster-state computation.

  • From Bell Inequalities to Tsirelson's Theorem

    David AVIS  Sonoko MORIYAMA  Masaki OWARI  

     
    INVITED PAPER

      Vol:
    E92-A No:5
      Page(s):
    1254-1267

    The first part of this paper contains an introduction to Bell inequalities and Tsirelson's theorem for the non-specialist. The next part gives an explicit optimum construction for the "hard" part of Tsirelson's theorem. In the final part we describe how upper bounds on the maximal quantum violation of Bell inequalities can be obtained by an extension of Tsirelson's theorem, and survey very recent results on how exact bounds may be obtained by solving an infinite series of semidefinite programs.

  • Schmidt Decomposition for Quantum Entanglement in Quantum Algorithms

    Kazuto OSHIMA  

     
    LETTER

      Vol:
    E90-A No:5
      Page(s):
    1012-1013

    We study quantum entanglement by Schmidt decomposition for some typical quantum algorithms. In the Shor's exponentially fast algorithm the quantum entanglement holds almost maximal, which is a major factor that a classical computer is not adequate to simulate quantum efficient algorithms.

  • Expressive Power of Quantum Pushdown Automata with Classical Stack Operations under the Perfect-Soundness Condition

    Masaki NAKANISHI  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER-Computation and Computational Models

      Vol:
    E89-D No:3
      Page(s):
    1120-1127

    One important question for quantum computing is whether a computational gap exists between models that are allowed to use quantum effects and models that are not. Several types of quantum computation models have been proposed, including quantum finite automata and quantum pushdown automata (with a quantum pushdown stack). It has been shown that some quantum computation models are more powerful than their classical counterparts and others are not since quantum computation models are required to obey such restrictions as reversible state transitions. In this paper, we investigate the power of quantum pushdown automata whose stacks are assumed to be implemented as classical devices, and show that they are strictly more powerful than their classical counterparts under the perfect-soundness condition, where perfect-soundness means that an automaton never accepts a word that is not in the language. That is, we show that our model can simulate any probabilistic pushdown automata and also show that there is a non-context-free language which quantum pushdown automata with classical stack operations can recognize with perfect soundness.

  • Parallelization of Quantum Circuits with Ancillae

    Hideaki ABE  Shao Chin SUNG  

     
    PAPER-Quantum Computation

      Vol:
    E86-D No:2
      Page(s):
    255-262

    In this paper, parallelization methods for quantum circuits are studied, where parallelization of quantum circuits means to reconstruct a given quantum circuit to one which realizes the same quantum computation with a smaller depth, and it is based on using additional bits, called ancillae, each of which is initialized to be in a certain state. We propose parallelization methods in terms of the number of available ancillae, for three types of quantum circuits. The proposed parallelization methods are more general than previous one in the sense that the methods are applicable when the number of available ancillae is fixed arbitrarily. As consequences, for the three types of n-bit quantum circuits, we show new upper bounds of the number of ancillae for parallelizing to logarithmic depth, which are 1/log n of previous upper bounds.

  • On the Power of Non-deterministic Quantum Finite Automata

    Masaki NAKANISHI  Takao INDOH  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER

      Vol:
    E85-D No:2
      Page(s):
    327-332

    The class NQP was proposed as the class of problems that are solvable by non-deterministic quantum Turing machines in polynomial time. In this paper, we introduce non-deterministic quantum finite automata in which the same non-determinism as in non-deterministic quantum Turing machines is applied. We compare non-deterministic quantum finite automata with the classical counterparts, and show that (unlike the case of classical finite automata) the class of languages recognizable by non-deterministic quantum finite automata properly contains the class of all regular languages.