The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] relay networks(17hit)

1-17hit
  • An Overview of Aerial Wireless Relay Networks for Emergency Communications during Large-Scale Disasters Open Access

    Hiraku OKADA  

     
    INVITED PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1376-1384

    In emergency communication systems research, aerial wireless relay networks (AWRNs) using multicopter unmanned aerial vehicles (UAVs) have been proposed. The main issue of the AWRNs is how to minimize the delay time of packet transmissions since it is not easy to supply many multicopters to cover a wide area. In this paper, we review the flight schemes and their delay time for the AWRNs. Furthermore, the network has specific issues such as multicopters' drops due to their battery capacity depletion and inclination of moving multicopters. The inclination of multicopters affects the received power, and the communication range changes based on the inclination as well. Therefore, we clarify the effect of these issues on the delay time.

  • Delay-Amplify-and-Forward Beamforming for Single-Carrier Relay Networks with Frequency Selective Channels

    Hiroki TAKAHASHI  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/05/19
      Vol:
    E100-B No:11
      Page(s):
    2079-2086

    In this paper, we propose a relaying strategy for single-carrier relay networks with frequency selective channels, where each relay node delays its received signal before amplify-and-forward processing it. We propose a computationally efficient delay design method which reduces the number of delay candidates. To further reduce computational complexity, we develop a simplified delay design method which reduces the number of weight computations. Also, we extend the design method to the case where only partial channel state information of relay-to-destination channels is available. Simulation results show that the proposed relaying strategy outperforms a conventional amplify-and-forward relaying strategy and achieves the performance close to that of a more complex filter-and-forward relaying strategy. It is also shown that the proposed delay design method achieves near-optimum performance.

  • Two-Way Cognitive DF Relaying in WSNs with Practical RF Energy Harvesting Node

    Dang Khoa NGUYEN  Hiroshi OCHI  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    675-684

    This work presents the exact outage performance and throughput of two-way cognitive decode-and-forward relaying wireless sensor networks with realistic transceiver relay. The relay is a self-powered wireless node that harvests radio frequency energy from the transmitted signals. We consider four configurations of a network with formed by combining two bidirectional relaying protocols (multiple access broadcast protocol and time division broadcast protocol), and two power transfer policies (dual-source energy transfer and single-fixed-source energy transfer). Based on our analysis, we provide practical insights into the impact of transceiver hardware impairments on the network performance, such as the fundamental capacity ceiling of the network with various configurations that cannot be exceeded by increasing transmit power given a fixed transmission rate and the transceiver selection strategy for the network nodes that can optimize the implementation cost and performance tradeoff.

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • Joint Source Power Allocation and Distributed Relay Beamforming Design in Cognitive Two-Way Relay Networks

    Binyue LIU  Guiguo FENG  Wangmei GUO  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1556-1566

    This paper studies an underlay-based cognitive two-way relay network which consists of a primary network (PN) and a secondary network (SN). Two secondary users (SUs) exchange information with the aid of multiple single-antenna amplify-and-forward relays while a primary transmitter communicates with a primary receiver in the same spectrum. Unlike the existing contributions, the transmit powers of the SUs and the distributed beamforming weights of the relays are jointly optimized to minimize the sum interference power from the SN to the PN under the quality-of-service (QoS) constraints of the SUs determined by their output signal-to-interference-plus-noise ratio (SINR) and the transmit power constraints of the SUs and relays. This approach leads to a non-convex optimization problem which is computationally intractable in general. We first investigate two necessary conditions that optimal solutions should satisfy. Then, the non-convex minimization problem is solved analytically based on the obtained conditions for single-relay scenarios. For multi-relay scenarios, an iterative numerical algorithm is proposed to find suboptimal solutions with low computational complexity. It is shown that starting with an arbitrarily initial feasible point, the limit point of the solution sequence derived from the iterative algorithm satisfies the two necessary conditions. To apply this algorithm, two approaches are developed to find an initial feasible point. Finally, simulation results show that on average, the proposed low-complexity solution considerably outperforms the scheme without source power control and performs close to the optimal solution obtained by a grid search technique which has prohibitively high computational complexity.

  • Resource Allocation for SVC Multicast over Wireless Relay Networks: RS Specification Function Based Simplification and Heuristics

    Hao ZHOU  Yusheng JI  Baohua ZHAO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:11
      Page(s):
    2089-2098

    Relay has been incorporated into standards of wireless access networks to improve the system capacity and coverage. However, the resource allocation problem to support scalable video coding (SVC) multicast for wireless relay networks is challenging due to the existence of relay stations (RSs). In this paper, we study the resource allocation problem for SVC multicast over multi-hop wireless relay networks to maximize the total utility of all users with a general non-negative, non-decreasing utility function. Since the problem is NP-hard, we simplify it with RS specification functions which specialize the relay station to receive data for each user, and convert the resource allocation problem with one RS specification function as finding a maximum spanning sub-tree of a directed graph under budget constraint. A heuristic algorithm is proposed to solve the problem with polynomial time complexity. The simulation results reveal that the proposed algorithm outperforms other algorithms under assumptions of two-hop wireless relay networks or separated transmission for relay and access links, and it keeps good approximation to the optimal results.

  • Joint MMSE Design of Relay and Destination in Two-Hop MIMO Multi-Relay Networks

    Youhua FU  Wei-Ping ZHU  Chen LIU  Feng LU  Hua-An ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:3
      Page(s):
    836-846

    This paper presents a joint linear processing scheme for two-hop and half-duplex distributed amplify-and-forward (AF) relaying networks with one source, one destination and multiple relays, each having multiple antennas. By using the minimum mean-square error (MMSE) criterion and the Wiener filter principle, the joint relay and destination design with perfect channel state information (CSI) is first formulated as an optimization problem with respect to the relay precoding matrix under the constraint of a total relay transmit power. The constrained optimization with an objective to design the relay block-diagonal matrix is then simplified to an equivalent problem with scalar optimization variables. Next, it is revealed that the scalar-version optimization is convex when the total relay power or the second-hop SNR (signal to noise ratio) is above a certain threshold. The underlying optimization problem, which is non-convex in general, is solved by complementary geometric programming (CGP). The proposed joint relay and destination design with perfect CSI is also extended for practical systems where only the channel mean and covariance matrix are available, leading to a robust processing scheme. Finally, Monte Carlo simulations are undertaken to demonstrate the superior MSE (mean-square error) and SER (symbol error rate) performances of the proposed scheme over the existing relaying method in the case of relatively large second-hop SNR.

  • Cognitive Fixed-Gain Amplify-and-Forward Relay Networks under Interference Constraints

    Dac-Binh HA  Vo Nguyen Quoc BAO  Xuan-Nam TRAN  Tuong-Duy NGUYEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    375-378

    In this work, we analyze the performance of cognitive amplify-and-forward (AF) relay networks under the spectrum sharing approach. In particular, by assuming that the AF relay operates in the semi-blind mode (fixed-gain), we derive the exact closed-form expressions of the outage probability for the cognitive relaying (no direct link) and cognitive cooperative (with direct link) systems. Simulation results are presented to verify the theoretical analysis.

  • Outage Analysis for Amplify-and-Forward Relay with End-to-End Antenna Selection over Non-identical Nakagami-m Environment

    Dac-Binh HA  Vo Nguyen Quoc BAO  Nguyen-Son VO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3341-3344

    We derive a closed-form expression for the outage probability (OP), which is an important performance metric used to measure the probability that the target error rate performance of wireless systems exceeds a specified value, of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying systems with best antenna selection under independent, but not necessarily identical distributed Nakagami-m fading. To gain further insights on the performance, the asymptotic approximation for OP, which reveals the diversity gain, is presented. We show that the diversity gain is solely determined by the fading severity parameters and increases with number of antennas at all nodes.

  • Performance Analysis of Decouple-and-Forward MIMO Relaying in Nakagami-m Fading

    Hoc PHAN  Trung Quang DUONG  Hans-Jürgen ZEPERNICK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:9
      Page(s):
    3003-3006

    The end-to-end performance of dual-hop multiple-input multiple-output (MIMO) decouple-and-forward relaying with orthogonal space-time block code (OSTBC) transmission over Nakagami-m fading is analyzed. By considering the multiple antennas at all nodes, we derive exact closed-form and asymptotic expressions for the outage probability and symbol error rate, which enables us to evaluate the exact performance and reveals the diversity gains of the considered system. In addition, the closed-form approximation and asymptotic expressions for the ergodic capacity are also derived. We show that OSTBC transmission over relay systems yields a unit order of multiplexing gain despite the fact that full diversity order, which is equal to the minimum fading severity between the two hops, is achieved.

  • Exact Outage Probability of Cognitive Underlay DF Relay Networks with Best Relay Selection

    Vo Nguyen Quoc BAO  Trung Quang DUONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2169-2173

    In this letter, we address the performance analysis of underlay selective decode-and-forward (DF) relay networks in Rayleigh fading channels with non-necessarily identical fading parameters. In particular, a novel result on the outage probability of the considered system is presented. Monte Carlo simulations are performed to verify the correctness of our exact closed-form expression. Our proposed analysis can be adopted for various underlay spectrum sharing applications of cognitive DF relay networks.

  • Outage Analysis of Cognitive Multihop Networks under Interference Constraints

    Vo Nguyen Quoc BAO  Trung Quang DUONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    1019-1022

    In this letter, we consider a cognitive radio based multihop network under the spectrum sharing underlay paradigm. By taking into account the interference constraints, we present an exact closed-form expression for outage probability, which is valid for the whole signal-to-noise ratio regime. In addition, some numerical examples of interest that study the effect of the number of hops and/or the interferer threshold on primary users are illustrated and discussed. Numerical results show that multihop systems still offer a considerable gain as compared to direct transmission under the same limit of interference.

  • Optimal Placement of Transparent Relay Stations in 802.16j Mobile Multihop Relay Networks Open Access

    Yongchul KIM  Mihail L. SICHITIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2582-2591

    WiMAX (IEEE 802.16) has emerged as a promising radio access technology for providing high speed broadband connectivity to subscribers over large geographic regions. New enhancements allow deployments of relay stations (RSs) that can extend the coverage of the base station (BS), increase cell capacity, or both. In this paper, we consider the placement of transparent RSs that maximize the cell capacity. We provide a closed-form approximation for the optimal location of RS inside a cell. A numerical analysis of a number of case studies validates the closed-form approximation. The numerical results show that the closed-form approximation is reasonably accurate.

  • Multichannel Random Access Protocol with Capture Effect for Cellular Relaying Networks

    Sunghyun CHO  Young-Ho JUNG  Cheolwoo YOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3093-3101

    This paper proposes a stabilized multichannel random access protocol based on slotted ALOHA for relay deployed cellular networks. To ensure the stability of random access, the proposed protocol dynamically controls the number of random access channels in a BS and a RS and the retransmission probability of the random access packets under heavy load conditions. A mathematical formula is also developed that derives an optimal partition ratio of the shared random access channels between a base station and a relay station without and with capture effect. Numerical results show that the proposed protocol can guarantee the required utilization and delay even in high offered load, which otherwise can cause bistable problem of slotted ALOHA.

  • Relay Selection in Amplify-and-Forward Systems with Partial Channel Information

    Zhaoxi FANG  Xiaolin ZHOU  Yu ZHU  Zongxin WANG  

     
    PAPER-Broadcast Systems

      Vol:
    E93-B No:3
      Page(s):
    704-711

    Selection relaying is a promising technique for practical implementation of cooperative systems with multiple relay nodes. However, to select the best relay, global channel knowledge is required at the selecting entity, which may result in considerable signaling overhead. In this paper, we consider the relay selection problem in dual-hop amplify-and-forward (AF) communication systems with partial channel state information (CSI). Relay selection strategies aiming at minimizing either the outage probability or the bit error rate (BER) with quantized CSI available are presented. We also propose a target rate based quantizer to efficiently partition the SNR range for outage minimized relay selection, and a target BER based quantizer for BER minimized relay selection. Simulation results show that near optimal performance is achievable with a few bits feedback to the selecting entity.

  • Relay Selection in Amplify-and-Forward Relay Network with Multiple Antennas at the Destination

    Zhenjie FENG  Taiyi ZHANG  Runping YUAN  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1769-1777

    In this paper, we consider an amplify-and-forward (AF) relay network where a source node transmits information to a destination node through the cooperation of multiple relay nodes. It is shown in prior works that the outage behavior and average throughput of the selection AF (S-AF) scheme where only the best relay node is chosen to assist can outperform the conventional all-participate AF (AP-AF) scheme. Assuming multiple antennas at the destination node and single antennas at other nodes in this paper, we propose a relay selection scheme according to the criterion of maximizing receive signal to noise ratio (SNR), where a group of relays is chosen to assist in the transmission simultaneously in a manner similar to cyclic delay diversity (CDD). Compared with S-AF, the proposed scheme achieves better outage behavior and average throughput. It can be seen from simulation results that the performance improvement of symbol error rate (SER) is significant compared with S-AF.

  • Analyses of Achievable Gains in Half Duplex MIMO Relaying Schemes Using Multiple Relay Nodes

    Hui SHI  Tetsushi ABE  Takahiro ASAI  Hitoshi YOSHINO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:9
      Page(s):
    2541-2551

    In multiple-input multiple-output (MIMO) wireless relay networks, simultaneously using multiple relay nodes can improve the capacity of source-to-destination communications. Recent information theories have shown that passing the same message across multiple relay nodes can improve the capacity of source-to-destination communications. We have previously proposed three relay schemes that use jointly QR decomposition and the phase control matrix; computer simulations have confirmed the superiority of these schemes over conventional ones such as amplify-and-forward and zero-forcing schemes. In this paper, we analyze the capacity and achievable gains (distributed array gain, intra-node array gain and spatial multiplexing gain) of the previously proposed relay schemes (QR-P-QR, QR-P-ZF, and ZF-P-QR) and thus provide an insight into what contributes to their superiority over conventional schemes. The analyses show that the location of the relay nodes used has a significant impact on capacity. On the basis of this observation, we further propose a method that enables each relay node to individually select its relay scheme according to its channel conditions so as to maximize the capacity. A computer simulation confirms the capacity improvement achieved by the proposed selection method.