The search functionality is under construction.

Keyword Search Result

[Keyword] relaying(86hit)

21-40hit(86hit)

  • Opportunistic Relaying Analysis Using Antenna Selection under Adaptive Transmission

    Ramesh KUMAR  Abdul AZIZ  Inwhee JOE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/16
      Vol:
    E99-B No:11
      Page(s):
    2435-2441

    In this paper, we propose and analyze the opportunistic amplify-and-forward (AF) relaying scheme using antenna selection in conjunction with different adaptive transmission techniques over Rayleigh fading channels. In this scheme, the best antenna of a source and the best relay are selected for communication between the source and destination. Closed-form expressions for the outage probability and average symbol error rate (SER) are derived to confirm that increasing the number of antennas is the best option as compared with increasing the number of relays. We also obtain closed-form expressions for the average channel capacity under three different adaptive transmission techniques: 1) optimal power and rate adaptation; 2) constant power with optimal rate adaptation; and 3) channel inversion with a fixed rate. The channel capacity performance of the considered adaptive transmission techniques is evaluated and compared with a different number of relays and various antennas configurations for each adaptive technique. Our derived analytical results are verified through extensive Monte Carlo simulations.

  • Performance of APD-Based Amplify-and-Forward Relaying FSO Systems over Atmospheric Turbulence Channels

    Thanh V. PHAM  Anh T. PHAM  

     
    PAPER-Communication Theory and Signals

      Vol:
    E99-A No:7
      Page(s):
    1455-1464

    This paper proposes and theoretically analyzes the performance of amplify-and-forward (AF) relaying free-space optical (FSO) systems using avalanche photodiode (APD) over atmospheric turbulence channels. APD is used at each relay node and at the destination for optical signal conversion and amplification. Both serial and parallel relaying configurations are considered and the subcarrier binary phase-shift keying (SC-BPSK) signaling is employed. Closed-form expressions for the outage probability and the bit-error rate (BER) of the proposed system are analytically derived, taking into account the accumulating amplification noise as well as the receiver noise at the relay nodes and at the destination. Monte-Carlo simulations are used to validate the theoretical analysis, and an excellent agreement between the analytical and simulation results is confirmed.

  • Performance Analysis of Two-Way Relaying Network with Adaptive Modulation in the Presence of Imperfect Channel Information

    Kyu-Sung HWANG  MinChul JU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1170-1179

    In this paper, we study the impact of imperfect channel information on an amplify-and-forward (AF)-based two-way relaying network (TWRN) with adaptive modulation which consists of two end-terminals and multiple relays. Specifically, we consider a single-relay selection scheme of the TWRN in the presence of outdated channel state information (CSI) and channel estimation errors. First, we choose the best relay based on outdated CSI, and perform adaptive modulation on both relaying paths with channel estimation errors. Then, we discuss the impact of the outdated CSI on the statistics of the signal-to-noise ratio (SNR) per hop. In addition, we formulate the end-to-end SNRs with channel estimation errors and offer statistic analyses in the presence of both the outdated CSI and channel estimation errors. Finally, we provide the performance analyses of the proposed TWRN with adaptive modulation in terms of average spectral efficiency, average bit error rate, and outage probability. Numerical examples are given to verify our obtained analytical results for various system conditions.

  • Optimal Source-Power Splitting in Non-Orthogonal Cooperative Relaying Communications

    Jihyun SHIN  Dongwoo KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    249-256

    This paper proposes an application of splitting source-node power for a two-phase cooperative relaying system where the transmit powers of the source and the relay node are individually constrained. In the proposed usage, the limited source power is divided into two parts that are used in the first and the second phase. Unlike conventional relaying methods, in the second phase the source retransmits its signal with the split power and, at the same time, the relay forwards the signal received at the first phase, which causes interference between the signals. In order to avoid the intervention, so-called a co-phasing weight for aligning the phases of the two signals is used at at the source before the second transmission. The forwarding operation at the relay however is exactly the same as the conventional techniques. Optimal power-splitting as well as the co-phasing weight is provided in this paper. With numerical investigation, the proposed power-splitting is shown to significantly improve the achievable throughput as well as reduce the outage probability compared with the conventional individual power allocation.

  • Outage Probability of Incremental Selection AF Relaying Scheme in Half-Duplex Cooperative Relay Networks

    Jeehoon LEE  Minjoong RIM  Kiseon KIM  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2439-2445

    An incremental relaying protocol is a promising scheme for preventing the inefficient use of resources in half-duplex cooperative relay networks. In particular, the incremental selection amplify-and-forward (ISAF) relaying scheme is a well-designed protocol under the condition that the source-to-destination (SD) link is static during the two transmission phases. However, from a practical viewpoint, the SD link is not static but varies with time, and thus the ISAF relaying scheme may not work well in the field. In this work, we first show that the outage performance of the ISAF relaying scheme may decrease when the SD link is not static during the two transmission phases. We then propose a modified version of the ISAF relaying scheme which overcomes such a limitation of the ISAF relaying scheme under time-varying environments. Finally, numerical and simulation results are provided to support our findings.

  • Cooperative Relaying Channel and Outage Performance in Narrowband Wireless Body Area Network

    Karma WANGCHUK  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E98-B No:4
      Page(s):
    554-564

    To improve the outage performance of a wireless body area network (BAN), exploitation of the diversity in the channel obtained by letting different nodes cooperate and relay signals for each other is an attractive solution. We carry out multi-link channel measurements and modeling for all realistic locations of the on-body sensor nodes and for three different motion scenarios in a typical office environment to develop equivalent channel model for simple and practical cooperative transmission schemes. Using the developed model the performance of the transmission schemes are evaluated and compared. Incremental decode and forward relaying is found to be consistently better than the other schemes with gains of up to 16dB at 10% outage probability, and an average gain of more than 5.9dB for any location of the coordinator node. The best location of the coordinator node based on the performance is also determined. Such insights will be very useful in designing BANs.

  • An Efficient Strategy for Relay Selection in Wireless Communication

    Hyun-Jun SHIN  Jung-In BAIK  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:2
      Page(s):
    740-744

    In wireless communication, it is hard to set the optimal route between a source and a destination through relays, since for optimal relaying, the system operator should know all channel conditions from a source to a destination through relays and determine the path with all channel conditions. In this letter, a multiple relay selection strategy is proposed for the reliability of transmission. The proposed strategy establishes a relaying route to a destination and provides an efficient relay selection process regardless of all channel conditions.

  • On the Reuse of Shadowed CRs as AF Diversity Relays in Cooperative Spectrum Sensing in Correlated Suzuki Fading Channels

    Thai-Mai Thi DINH  Quoc-Tuan NGUYEN  Dinh-Thong NGUYEN  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    116-125

    Most recent work on cooperative spectrum sensing using cognitive radios has focused on issues involving the sensing channels and seemed to ignore those involving the reporting channels. Furthermore, no research has treated the effect of correlated composite Rayleigh-lognormal fading, also known as Suzuki fading, in cognitive radio. This paper proposes a technique for reuse of shadowed CRs, discarded during the sensing phase, as amplified-and-forward (AF) diversity relays for other surviving CRs to mitigate the effects of such fading in reporting channels. A thorough analysis of and a closed-form expression for the outage probability of the resulting cooperative AF diversity network in correlated composite Rayleigh-lognormal fading channels are presented in this paper. In particular, an efficient solution to the “PDF of sum-of-powers” of correlated Suzuki-distributed random variables using moment generating function (MGF) is proposed.

  • Opportunistic Decouple-and-Forward Relaying: Harnessing Distributed Antennas

    Jaeyoung LEE  Hyundong SHIN  Jun HEO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:6
      Page(s):
    1148-1156

    In this paper, we consider decouple-and-forward (DCF) relaying, where the relay encodes and amplifies decoupled data using orthogonal space-time block codes (OSTBCs), to achieve the maximum diversity gain of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying. Since the channel status of all antennas is generally unknown and time-varying for cooperation in multi-antenna multiple-relay systems, we investigate an opportunistic relaying scheme for DCF relaying to harness distributed antennas and minimize the cooperation overheads by not using the global channel state information (CSI). In addition, for realistic wireless channels which have spatial fading correlation due to closely-spaced antenna configurations and poor scattering environments, we analyze the exact and lower bound on the symbol error probability (SEP) of the opportunistic DCF relaying over spatially correlated MIMO Rayleigh fading channels. Numerical results show that, even in the presence of spatial fading correlation, the proposed opportunistic relaying scheme is efficient and achieves additional performance gain with low overhead.

  • Reduced-Complexity Constellation Mapping and Decoding in Wireless Multi-Way Relaying Networks

    Ning WANG  Zhiguo DING  Xuchu DAI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:4
      Page(s):
    702-711

    In this paper, we focus on the multi-way relaying channel where K users wish to exchange information with each other within two phases. Precoding at each user and the relay is carefully constructed to ensure that the signals from the same user pair are grouped together and cross-pair interference can be cancelled. Reliable detection is challenging at the relay since the observation constellation is no longer one of the regular ones, due to the fact that a relay observation is the superposition of the messages from one of the $ rac{1}{2}K(K-1)$ user pairs. When the trellis coded modulation is used at each node, a simple constellation mapping function and a reduced-states decoding scheme can be applied at the relay, which result in much lower complexity. Furthermore, a modified version of the decoding method is also developed which is called the re-encoding-avoidance scheme at the relay. Monte-Carlo simulation results are provided to demonstrate the performance of the proposed scheme.

  • Comprehensive Performance Analysis of Two-Way Multi-Relay System with Amplify-and-Forward Relaying

    Siye WANG  Yanjun ZHANG  Bo ZHOU  Wenbiao ZHOU  Dake LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    666-673

    In this paper, we consider a two-way multi-relay scenario and analyze the bit error rate (BER) and outage performance of an amplify-and-forward (AF) relaying protocol. We first investigate the bit error probability by considering channel estimation error. With the derivation of effective signal-to-noise ratio (SNR) at the transceiver and its probability density function (PDF), we can obtain a closed form formulation of the total average error probability of two-way multi-relay system. Furthermore, we also derive exact expressions of the outage probability for two-way relay through the aid of a modified Bessel function. Finally, numerical experiments are performed to verify the analytical results and show that our theoretical derivations are exactly matched with simulations.

  • Study of Multi-Cell Interference in a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3163-3171

    In the literature, many resource allocation schemes have been proposed for multi-hop networks. However, the analyses provided focus mainly on the single cell case. Inter-cell interference severely degrades the performance of a wireless mobile network. Therefore, incorporating the analysis of inter-cell interference into the study of a scheme is required to more fully understand the performance of that scheme. The authors of this paper have proposed a parallel relaying scheme for a 2-hop OFDMA virtual cellular network (VCN). The purpose of this paper is to study a new version of that scheme which considers a multi-cell environment and evaluate the performance of the VCN. The ergodic channel capacity and outage capacity of the VCN in the presence of inter-cell interference are evaluated, and the results are compared to those of the single hop network (SHN). Furthermore, the effect of the location and number of wireless ports in the VCN on the channel capacity of the VCN is investigated, and the degree of fairness of the VCN relative to that of the SHN is compared. Using computer simulations, it is found that in the presence of inter-cell interference, a) the VCN outperforms the SHN even in the interference dominant transmission power region (when a single cell is considered, the VCN is better than the SHN only in the noise dominant transmission power region), b) the channel capacity of the VCN remains greater than that of the SHN even if the VCN is fully loaded, c) an optimal distance ratio for the location of the wireless ports can be found in the interval 0.2∼0.4, d) increasing the number of wireless ports from 3 to 6 can increase the channel capacity of the VCN, and e) the VCN can achieve better outage capacity than the SHN.

  • Outage Performance Analysis of a Multiuser Two-Way Relaying Network with Feedback Delay

    Jie YANG  Xiaofei ZHANG  Kai YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2052-2056

    The outage performance of a multiuser two-way amplify-and-forward (AF) relaying network, where N-th best selection scheme with the consideration to the feedback delay, is investigated. Specifically, the new closed-form expressions for cumulative distribution function (CDF) and outage probability (OP) are presented over time varying Rayleigh-fading channels. Furthermore, simple approximate OP is derived assessing the high signal-to-noise-ratio (SNR), which identifies the diversity behavior. Numerical results show excellent agreement with theoretical results.

  • Study of a Multiuser Resource Allocation Scheme for a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2112-2118

    In the next generation mobile network, the demand for high data rate transmission will require an increase in the transmission power if the current mobile cellular network architecture is used. Multihop networks are considered to be a key solution to this problem. However, a new resource allocation algorithm is also required for the new network architecture. In this paper, we propose a resource allocation scheme for a parallel relay 2-hop OFDMA virtual cellular network (VCN) which can be applied in a multiuser environment. We evaluate, by computer simulation, the ergodic channel capacity of the VCN using the proposed algorithm, and compare the results with those of the conventional single hop network (SHN). In addition, we analyze the effect of the location of the relay wireless ports on the ergodic channel capacity of the VCN. We also study the degree of fairness of the VCN, using the proposed scheme, compared with that of the SHN. For low transmission power, the simulation results show: a) the VCN can provide a better ergodic channel capacity and a better degree of fairness than the SHN, b) the distance ratio for which the ergodic channel capacity of the VCN is maximal can be found in the interval 0.20.3, c) the ergodic channel capacity of the VCN remains better than that of the SHN as the number of users increases, and d) as the distance between the relay WPs and the base station increases, the channel capacity of VCN approaches that of the SHN.

  • Outage Performance for Antenna Selection in AF Two-Way Relaying System with Channel Estimation Error

    Zhangjun FAN  Daoxing GUO  Bangning ZHANG  Youyun XU  

     
    LETTER-Information Network

      Vol:
    E96-D No:7
      Page(s):
    1552-1556

    This letter investigates the outage performance of a joint transmit and receive antenna selection scheme in an amplify-and-forward two-way relaying system with channel estimation error. A closed-form approximate outage probability expression is derived, based on which the asymptotic outage probability expression is derived to get an insight on system's outage performance at high signal-to-noise (SNR) region. Monte Carlo simulation results are presented to verify the analytical results.

  • Multi-Operator Mobile Relaying: Shared-Spectrum Allocation

    Tomohiko MIMURA  Koji YAMAMOTO  Masahiro MORIKURA  Ayako IWATA  Akihiko NISHIO  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1377-1384

    In this paper, we introduce the concept of a multi-operator mobile relay node (RN) for cellular networks on buses or trains. The installation of RNs improves spectral efficiency because an antenna with a higher gain than that of user equipment (UE) can be installed in an RN. However, installing different RNs for different operators is not efficient because of the large amount of space needed to install multiple RNs in a bus. Thus, sharing one RN among multiple operators is a more practical approach. When we use a multi-operator mobile RN, the required amount of resource for each operator varies independently as the RN moves. Consequently, we propose a system of shared-spectrum allocation among operators for RN-UEs communication. Shared bandwidth can be allocated to operators according to link quality in order to achieve effective utilization of radio resources. However, to introduce shared-spectrum allocation, fairness among the operators and the total efficiency of the system should be taken into consideration. Using computer simulations, we evaluate shared-spectrum allocation based on the Nash bargaining solution (NBS). The results, in terms of both fairness and efficiency, indicate that total throughput can be improved by approximately 20% compared with the situation where multiple operators install different RNs individually.

  • Secure Communication of the Multi-Antenna Channel Using Cooperative Relaying and Jamming

    Haiyan XU  Qian TIAN  Jianhui WU  Fulong JIANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:4
      Page(s):
    948-955

    In this paper we establish a secure communication model where eavesdropper and intended receiver have multiple antennas. We use cooperation and jamming to achieve physical layer security. First, we study how to allocate power between the information bearing signal and the jamming signal. Second, based on this model, we also jointly optimize both the information bearing signal weights and the jamming signal weights to improve physical layer security. The optimal power allocation and the weights are obtained via an iteration algorithm to maximize the secrecy rate. Comparing with equal power allocation and some other different methods, it shows that using cooperative relaying and jamming can significantly improve the physical layer security from the simulation results.

  • An EM Algorithm-Based Disintegrated Channel Estimator for OFDM AF Cooperative Relaying

    Jeng-Shin SHEU  Wern-Ho SHEEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    254-262

    The cooperative orthogonal frequency-division multiplexing (OFDM) relaying system is widely regarded as a key design for future broadband mobile cellular systems. This paper focuses on channel estimation in such a system that uses amplify-and-forward (AF) as the relaying strategy. In the cooperative AF relaying, the destination requires the individual (disintegrated) channel state information (CSI) of the source-relay (S-R) and relay-destination (R-D) links for optimum combination of the signals received from source and relay. Traditionally, the disintegrated CSIs are obtained with two channel estimators: one at the relay and the other at the destination. That is, the CSI of the S-R link is estimated at relay and passed to destination, and the CSI of the R-D link is estimated at destination with the help of pilot symbols transmitted by relay. In this paper, a new disintegrated channel estimator is proposed; based on an expectation-maximization (EM) algorithm, the disintegrated CSIs can be estimated solely by the estimator at destination. Therefore, the new method requires neither signaling overhead for passing the CSI of the S-R link to destination nor pilot symbols for the estimation of the R-D link. Computer simulations show that the proposed estimator works well under the signal-to-noise ratios of interest.

  • Simple Nonbinary Coding Strategy for Very Noisy Relay Channels

    Puripong SUTHISOPAPAN  Kenta KASAI  Anupap MEESOMBOON  Virasit IMTAWIL  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E95-A No:12
      Page(s):
    2122-2129

    From an information-theoretic point of view, it is well known that the capacity of relay channels comprising of three terminals is much greater than that of two terminal direct channels especially for low SNR region. Previously invented relay coding strategies have not been designed to achieve this relaying gain occurring in the low SNR region. In this paper, we propose a new simple coding strategy for a relay channel with low SNR or, equivalently, for a very noisy relay channel. The multiplicative repetition is utilized to design this simple coding strategy. We claim that the proposed strategy is simple since the destination and the relay can decode with almost the same computational complexity by sharing the same structure of decoder. An appropriate static power allocation which yields the maximum throughput close to the optimal one in low SNRs is also suggested. Under practical constraints such as equal time-sharing etc., the asymptotic performance of this simple strategy is within 0.5 dB from the achievable rate of a relay channel. Furthermore, the performance at few thousand bits enjoys a relaying gain by approximately 1 dB.

  • Interference-Aware Power Control for Relay-Enhanced Multicell Networks

    Xiaoyan HUANG  Yuming MAO  Supeng LENG  Yan ZHANG  Qin YU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3845-3854

    This paper focuses on power control in relay-enhanced multicell networks with universal frequency reuse for maximizing the overall system throughput, subject to interference and noise impairments, and individual power constraints at both BSs and RSs. With a high signal-to-interference-plus-noise ratio (SINR) approximation, an energy efficiency based power allocation algorithm is proposed to achieve the maximum sum throughput with the least power consumption. Moreover, an iterative quasi-distributed power allocation algorithm is also presented, which is suitable for any SINR regime. Numerical results indicate that the proposed algorithms approach the optimal power allocation and the system performance can be significantly improved in terms of network throughput and energy efficiency.

21-40hit(86hit)