The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] small cell(17hit)

1-17hit
  • Indoor Partition Attenuations and Base Station Deployments for the 5G Wireless Communications

    Chi-Min LI  Dong-Lin LU  Pao-Jen WANG  

     
    PAPER-Propagation

      Pubricized:
    2021/12/03
      Vol:
    E105-B No:6
      Page(s):
    729-736

    Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth shortage below 6GHz (sub-6G), future wireless communications can be up-converted to the millimeter-wave (mm-wave) bands. Nevertheless, mm-wave frequency bands suffer from high channel attenuation and serious penetration loss compared with sub-6G frequency bands, and the signal transmission in the indoor environment will furthermore be affected by various partition materials, such as concrete, wood, glass, etc. Therefore, the fifth-generation (5G) mobile communication system may use multiple small cells (SC) to overcome the signal attenuation caused by using mm-wave bands. This paper will analyze the attenuation characteristics of some common partition materials in indoor environments. Besides, the performances, such as the received signal power, signal to interference plus noise ratio (SINR) and system capacity for different SC deployments are simulated and analyzed to provide the suitable guideline for each SC deployments.

  • Excess Path Loss Prediction of the Air to Ground Channel for Drone Small Cell

    Chi-Min LI  Yi-Ting LIAO  Pao-Jen WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/07/13
      Vol:
    E105-B No:1
      Page(s):
    44-50

    In order to satisfy the user's demands for faster data rates and higher channel capacity, fifth generation (5G) wireless networks operate in the frequency at both sub-6GHz and millimeter wave bands for more abundant spectrum resources. Compared with the sub-6G bands, signals transmitted in the millimeter bands suffer from severe channel attenuation. A drone small cell (DSC) has been proposed recently to provide services outdoors. Not only does DSC have high maneuverability, it can also be deployed quickly in the required regions. Therefore, it is an important issue to establish the Air-to-Ground (ATG) channel model by taking into account the effects of building shielding and excess loss in various DSC deployments at different frequency bands. In this paper, we synthesize the ATG channels of the DSC and approximate the excess path loss of the ATG for different urban environments based on the ITU-R standard. With the approximated curve fitting relations, the proper height of the drone base station that satisfies a certain connected probability can be easily obtained for different scenarios.

  • Joint Optimization for User Association and Inter-Cell Interference Coordination Based on Proportional Fair Criteria in Small Cell Deployments

    Nobuhiko MIKI  Yusaku KANEHIRA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    253-261

    In small cell deployments, the combined usage of user association and inter-cell interference coordination (ICIC) is inevitable. This paper investigates the joint optimization of user association and ICIC in the downlink. We first formulate the joint optimization problem as a utility maximization problem. We then employ the logarithmic utility function known as the proportional fair criteria. The optimum user association and the ICIC are derived by solving a convex optimization problem based on the average spectral efficiencies of all users. We propose an iterative algorithm to obtain the optimum solution to this problem. We evaluate the performance of the proposed algorithm for the small cell deployments and shows that the proposed algorithm works well. We also compare the performance of the proposed algorithm based on utility maximization user association with the CRE, and show the superiority of the utility maximization. Furthermore, we show that intra-tier ICIC and inter-tier ICIC can effectively improve the throughput performance according to the conditions. It is also shown that the combined usage of inter-tier ICIC and intra-tier ICIC enhances the throughput performance compared to schemes employing either the inter- or intra-tier ICIC scheme.

  • Effect of Joint Detection on System Throughput in Distributed Antenna Network

    Haruya ISHIKAWA  Yukitoshi SANADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/08/29
      Vol:
    E102-B No:3
      Page(s):
    641-647

    This paper evaluates the throughput of a distributed antenna network (DAN) with multiple mobile terminal scheduling and the usage of joint maximum-likelihood detection (MLD). Mobile terminals are closer to the desired antennas in the DAN which leads to higher throughput and better frequency utilization efficiency. However, when multiple mobile terminal scheduling is applied to the DAN, interference can occur between transmitted signals from antennas. Therefore, in this research, mobile terminal scheduling along with joint MLD is applied to reduce the effects of interference. A system level simulation shows that the usage of joint MLD in a densely packed DAN provides better system throughput regardless of the numbers of mobile terminals and fading channels.

  • Network-Listening Based Synchronization with Loop-Back Interference Avoidance Using Synchronization Signal

    Mitsukuni KONISHI  Sho NABATAME  Daigo OGATA  Atsushi NAGATE  Teruya FUJII  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/11
      Vol:
    E101-B No:3
      Page(s):
    885-896

    Network-listening-based synchronization is recently attracting attention as an effective timing synchronization method for indoor small-cell base stations as they cannot utilize GPS-based synchronization. It uses only the macro-cell downlink signal to establish synchronization with the overlaying macro cell. However, the loop-back signal from the small-cell base station itself interferes with the reception of the macro-cell downlink signal in the deployment of co-channel heterogeneous networks. In this paper, we investigate a synchronization method that avoids loop-back interference by muting small-cell data transmission and shifting small-cell transmission timing. Our proposal enables to reduce the processing burden of the network listening and mitigate the throughput degradation of the small cell caused by the data-transmission mutation. In addition to this, the network-listening system enables the network listening in dense small cell deployments where a large number of neighboring small cells exist. We clarify the performance of our proposal by computer simulations and laboratory experiments on actual equipment.

  • Design and Experimental Evaluation of 60GHz Multiuser Gigabit/s Small Cell Radio Access Based on IEEE 802.11ad/WiGig

    Koji TAKINAMI  Naganori SHIRAKATA  Masashi KOBAYASHI  Tomoya URUSHIHARA  Hiroshi TAKAHASHI  Hiroyuki MOTOZUKA  Masataka IRIE  Masayuki SHIMIZU  Yuji TOMISAWA  Kazuaki TAKAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1075-1085

    This paper presents the design and experimental evaluation of 60GHz small cell radio access based on IEEE 802.11ad/WiGig. The access point (AP) prototype used combines three RF modules with beamforming technology to provide 360° area coverage. In order to compensate for limited communication distance, multiple APs are employed to achieve wide area coverage. A handover algorithm suitable for IEEE 802.11ad/WiGig is employed to achieve flexible control of the cell coverage of each AP. As a proof of concept, a prototype system is set up at Narita International Airport and the capability of multiuser Gb/s wireless access is successfully demonstrated. In addition, the system behavior under stringent conditions is evaluated by load testing and throughput degradation due to co-channel and inter-channel interference is investigated.

  • Novel Cellular Active Array Antenna System at Base Station for Beyond 4G Open Access

    Masayuki NAKANO  

     
    INVITED PAPER

      Vol:
    E100-B No:2
      Page(s):
    195-202

    This paper introduces a base station antenna system as a future cellular technology. The base station antenna system is the key to achieving high-speed data transmission. It is particularly important to improve the frequency reuse factor as one of the roles of a base station. Furthermore, in order to solve the interference problem due to the same frequency being used by the macro cell and the small cell, the author focuses on beam and null control using an AAS (Active Antenna System) and elucidates their effects through area simulations and field tests. The results showed that AAS can improve the SINR (signal to interference-plus-noise ratio) of the small cell area inside macro cells. The paper shows that cell quality performance can be improved by incorporating the AAS into a cellular base station as its antenna system for beyond 4G radio access technology including the 5G cellular system.

  • Interference Cancellation Employing Replica Selection Algorithm and Neural Network Power Control for MIMO Small Cell Networks

    Michael Andri WIJAYA  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/02
      Vol:
    E99-B No:11
      Page(s):
    2414-2425

    In a network with dense deployment of multiple-input multiple-output (MIMO) small cells, coverage overlap between the small cells produces intercell-interference, which degrades system capacity. This paper proposes an intercell-interference management (IIM) scheme that aims to maximize system capacity by using both power control for intercell-interference coordination (ICIC) on the transmitter side and interference cancellation (IC) on the receiver side. The power control determines transmit power levels at the base stations (BSs) by employing a neural network (NN) algorithm over the backhaul. To further improve the signal to interference plus noise ratio (SINR), every user terminal (UT) employs a multiuser detector (MUD) as IC. The MUD detects not only the desired signals, but also some interfering signals to be cancelled from received signals. The receiver structure consists of branch metric generators (BMGs) and MUD. BMGs suppress residual interference and noise in the received signals by whitening matched filters (WMFs), and then generate metrices by using the WMFs' outputs and symbol candidates that the MUD provides. On the basis of the metrices, the MUD detects both the selected interfering signals and the desired signals. In addition, the MUD determines which interfering signals are detected by an SINR based replica selection algorithm. Computer simulations demonstrate that the SINR based replica selection algorithm, which is combined with channel encoders and packet interleavers, can significantly improve the system bit error rate (BER) and that combining IC at the receiver with NN power control at the transmitter can considerably increase the system capacity. Furthermore, it is shown that choosing the detected interfering signals by the replica selection algorithm can obtain system capacity with comparable loss and less computational complexity compared to the conventional greedy algorithm.

  • Neural Network Based Transmit Power Control and Interference Cancellation for MIMO Small Cell Networks

    Michael Andri WIJAYA  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1157-1169

    The random deployment of small cell base stations (BSs) causes the coverage areas of neighboring cells to overlap, which increases intercell interference and degrades the system capacity. This paper proposes a new intercell interference management (IIM) scheme to improve the system capacity in multiple-input multiple-output (MIMO) small cell networks. The proposed IIM scheme consists of both an interference cancellation (IC) technique on the receiver side, and a neural network (NN) based power control algorithm for intercell interference coordination (ICIC) on the transmitter side. In order to improve the system capacity, the NN power control optimizes downlink transmit power while IC eliminates interfering signals from received signals. Computer simulations compare the system capacity of the MIMO network with several ICIC algorithms: the NN, the greedy search, the belief propagation (BP), the distributed pricing (DP), and the maximum power, all of which can be combined with IC reception. Furthermore, this paper investigates the application of a multi-layered NN structure called deep learning and its pre-training scheme, into the mobile communication field. It is shown that the performance of NN is better than that of BP and very close to that of greedy search. The low complexity of the NN algorithm makes it suitable for IIM. It is also demonstrated that combining IC and sectorization of BSs acquires high capacity gain owing to reduced interference.

  • Cooperative Interference Mitigation Algorithm in Heterogeneous Networks

    Trung Kien VU  Sungoh KWON  Sangchul OH  

     
    PAPER-Network

      Vol:
    E98-B No:11
      Page(s):
    2238-2247

    Heterogeneous hetworks (HetNets) have been introduced as an emerging technology in order to meet the increasing demand for mobile data. HetNets are a combination of multi-layer networks such as macrocells and small cells. In such networks, users may suffer significant cross-layer interference. To manage this interference, the 3rd Generation Partnership Project (3GPP) has introduced enhanced Inter-Cell Interference Coordination (eICIC) techniques. Almost Blank SubFrame (ABSF) is one of the time-domain techniques used in eICIC solutions. We propose a dynamically optimal Signal-to-Interference-and-Noise Ratio (SINR)-based ABSF framework to ensure macro user performance while maintaining small user performance. We also study cooperative mechanisms to help small cells collaborate efficiently in order to reduce mutual interference. Simulations show that our proposed scheme achieves good performance and outperforms the existing ABSF frameworks.

  • Low Complexity Millimeter-Wave LOS-MIMO Systems with Uniform Circular Arrays for Small Cells Wireless Backhaul

    Liang ZHOU  Yoji OHASHI  Makoto YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2348-2358

    The dramatic growth in wireless data traffic has triggered the investigation of fifth generation (5G) wireless communication systems. Small cells will play a very important role in 5G to meet the 5G requirements in spectral efficiency, energy savings, etc. In this paper, we investigate low complexity millimeter-wave communication systems with uniform circular arrays (UCAs) in line-of-sight (LOS) multiple-input multiple-output (MIMO) channels, which are used in fixed wireless access such as small cell wireless backhaul for 5G. First, we demonstrate that the MIMO channel matrices for UCAs in LOS-MIMO channels are circulant matrices. Next, we provide a detailed derivation of the unified optimal antenna placement which makes MIMO channel matrices orthogonal for 3×3 and 4×4 UCAs in LOS channels. We also derive simple analytical expressions of eigenvalues and capacity as a function of array design (link range and array diameters) for the concerned systems. Finally, based on the properties of circulant matrices, we propose a high performance low complexity LOS-MIMO precoding system that combines forward error correction (FEC) codes and spatial interleaver with the fixed IDFT precoding matrix. The proposed precoding system for UCAs does not require the channel knowledge for estimating the precoding matrix at the transmitter under the LOS condition, since the channel matrices are circulant ones for UCAs. Simulation results show that the proposed low complexity system is robust to various link ranges and can attain excellent performance in strong LOS environments and channel estimation errors.

  • Semi-Distributed Resource Allocation for Dense Small Cell Networks

    Hong LIU  Yang YANG  Xiumei YANG  Zhengmin ZHANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E98-A No:5
      Page(s):
    1140-1143

    Small cell networks have been promoted as an enabling solution to enhance indoor coverage and improve spectral efficiency. Users usually deploy small cells on-demand and pay no attention to global profile in residential areas or offices. The reduction of cell radius leads to dense deployment which brings intractable computation complexity for resource allocation. In this paper, we develop a semi-distributed resource allocation algorithm by dividing small cell networks into clusters with limited inter-cluster interference and selecting a reference cluster for interference estimation to reduce the coordination degree. Numerical results show that the proposed algorithm can maintain similar system performance while having low complexity and reduced information exchange overheads.

  • Millimeter-Wave Evolution for 5G Cellular Networks Open Access

    Kei SAKAGUCHI  Gia Khanh TRAN  Hidekazu SHIMODAIRA  Shinobu NANBA  Toshiaki SAKURAI  Koji TAKINAMI  Isabelle SIAUD  Emilio Calvanese STRINATI  Antonio CAPONE  Ingolf KARLS  Reza AREFI  Thomas HAUSTEIN  

     
    PAPER

      Vol:
    E98-B No:3
      Page(s):
    388-402

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  • Adaptive Channel Power Partitioning Scheme in WCDMA Femto Cell

    Tae-Won BAN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:1
      Page(s):
    190-195

    Recently, small cell systems such as femto cell are being considered as a good alternative that can support the increasing demand for mobile data traffic because they can significantly enhance network capacity by increasing spatial reuse. In this paper, we analyze the coverage and capacity of a femto cell when it is deployed in a hotspot to reduce the traffic loads of neighboring macro base stations (BSs). Our analysis results show that the coverage and capacity of femto cell are seriously affected by surrounding signal environment and they can be greatly enhanced by adapting power allocation for channels to the surrounding environment. Thus, we propose an adaptive power partitioning scheme where power allocation for channels can be dynamically adjusted to suit the environment surrounding the femto cell. In addition, we numerically derive the optimal power allocation ratio for channels to optimize the performance of the femto cell in the proposed scheme. It is shown that the proposed scheme with the optimal channel power allocation significantly outperforms the conventional scheme with fixed power allocation for channels.

  • Performance Evaluation of LTE-Advanced Heterogeneous Network Deployment Using Carrier Aggregation between Macro and Small Cells

    Takahiro TAKIGUCHI  Kohei KIYOSHIMA  Yuta SAGAE  Kengo YAGYU  Hiroyuki ATARASHI  Sadayuki ABETA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1297-1305

    This paper evaluates the downlink performance of an LTE-Advanced (LTE-A) heterogeneous network that uses carrier aggregation (CA) between macro and small cells. The concept of utilizing the CA functionalities in LTE-A is effective in increasing the network capacity in a congested area through raising of the base station density using small cells overlaid onto an existing macro cell network. This concept is also effective in maintaining the mobility performance of user equipment (UE) because handover operation is not applied when entering/leaving a small cell, but component carrier addition/removal is only performed through CA while maintaining the connection to a macro cell. In order to present comprehensive performance evaluations in an LTE-A heterogeneous network with CA, this paper evaluates various performance criteria, e.g., downlink cell throughput and downlink user throughput. According to the obtained simulation results, the total downlink cell throughput achieved in an LTE-A heterogeneous network deployment with CA (four small cells overlaid onto a macro cell sector) exhibits a 3.9-fold improvement compared to a conventional-macro-cell-only network deployment using two frequency bands.

  • Interference Mitigation in CR-Enabled Heterogeneous Networks Open Access

    Shao-Yu LIEN  Shin-Ming CHENG  Kwang-Cheng CHEN  

     
    INVITED PAPER

      Vol:
    E96-B No:6
      Page(s):
    1230-1242

    The heterogeneous network (HetNet), which deploys small cells such as picocells, femotcells, and relay nodes within macrocell, is regarded as a cost-efficient and energy-efficient approach to resolve increasing demand for data bandwidth and thus has received a lot of attention from research and industry. Since small cells share the same licensed spectrum with macrocells, concurrent transmission induces severe interference, which causes performance degradation, particularly when coordination among small cell base stations (BSs) is infeasible. Given the dense, massive, and unplanned deployment of small cells, mitigating interference in a distributed manner is a challenge and has been explored in recent papers. An efficient and innovative approach is to apply cognitive radio (CR) into HetNet, which enables small cells to sense and to adapt to their surrounding environments. Consequently, stations in each small cell are able to acquire additional information from surrounding environments and opportunistically operate in the spectrum hole, constrained by minimal inducing interference. This paper summarizes and highlights the CR-based interference mitigation approaches in orthogonal frequency division multiple access (OFDMA)-based HetNet networks. With special discussing the role of sensed information at small cells for the interference mitigation, this paper presents the potential cross-layer facilitation of the CR-enable HetNet.

  • A 300 MHz Dual Port Palette RAM Using Port Swap Architecture

    Yasunobu NAKASE  Koichiro MASHIKO  Yoshio MATSUDA  Takeshi TOKUDA  

     
    PAPER-Electronic Circuits

      Vol:
    E81-C No:9
      Page(s):
    1484-1490

    This paper proposes a dual port color palette SRAM using a single bit line cell. Since the single bit line cell consists of fewer bit lines and transistors than standard dual port cells, it is able to reduce the area. However, the cell has had a problem in writing a high level. The port swap architecture solves the problem without any special mechanism such as a boot strap. In the architecture, each of two bit lines is assigned to the read/write MPU port and the read only pixel port, respectively. When writing a low level, the MPU port uses pre-assigned bit line. On the other hand, when writing a high level, the MPU port uses the bit line assigned to the pixel port by a swap operation. During the swapping, the pixel port continues the read operation by using the bit line assigned to the MPU port. A color palette using this architecture is fabricated with a 0. 5 µm CMOS process technology. The memory cell size reduces by up to 43% compared with standard dual port cells. The color palette is able to supply the pixel data at 300 MHz at the supply voltage of 3.3 V. This speed is enough to support the practical highest resolution monitors in the world.